
- Carnegie-Mericon Unversit y

___ ~Software Engineering nlstitute

Unit Testing and Analysis

Curriculum Module SEl-CM-9-1.2)

I *

Unit Testing and Analysis

SEI Curriculum Module SEI-CM-9-1.2

April 1989

*I

arryJ. Morell - -Larry J.Mrl c,, :.7: " ;+

College of William and Mary , , -

Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

/JOHN S. HERMAN, Capt, USAF

SE! Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, Uq Oepartment of Commerce, Springfield, VA 22161.

Use ,f any tradumarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Unit Testing and Analysis

Acknowledgements Contents

I want to thank the members of the Education Program at Capsule Description 1
the Software Engineering Institute for their support and Philosophy 1
encouragement during the writing of this module. Gary
Ford and Lionel Deimel always asked the right questions Objectives 2
at the right time. In his handling of administrative details, Prerequisite Knowledge 2
Albert Johnson enabled me to concentrate on the task at Module Content 3
hand. Director of Education Norm Gibbs provided many
opportunities for interaction with other members of the Outline 3
Institute. Annotated Outline 3

Two student assistants were instrumental in constructing Glossary 12
the bibliography and are much deserving of thanks. Teaching Considerations 14
Suzanne Woolf performed the library searches, and Dana Textbooks 14
Hausman spent many hours typing abstracts and annota-
tions. Suggested Schedules 14

Finally, I want to thank the many people who invested Exercises 15
their time in reviewing earlier drafts of this module: Mark Suggested Reading Lists 15
Borger, Peter Feiler, Robert Goldberg, John Goodenough, Bibliography 17
Marc Graham, John Nestor, K. C. Tai. Christian Wild, and
Steven Zeil. Their many commments and suggestions.were invaluable in bringing this module to fruition.

SEI-CM-9-1.2 iii

S

Unit Testing and Analysis

Module Revision History

Version 1.2 (April 1989) Outline error and other minor errors corrected
Version 1.1 (December 1988) Minor changes and more thorough annotations in bibliography

Approved for publication
Version 1.0 (October 1987) Draft for public review

iv SEI-CM-9-1.2

Unit Testing and Analysis

Capsule Description a specification written in a formal language, or a
general statement of requirements. Unless otherwise

This module examines the techniques, assessment, indicated, this documentation should not be assumed
and management of unit testing and analysis. Test- to be the particular document in the software life cy-
ing and analysis strategies are categorized according cle called a "software specification," "software re-
to whether their coverage goal is functional, struc- quirements definition," or the like. Any document
tural, error-oriented, or a combination of these, containing information about the unit may provide
Mastery of the material in this module allows the useful information for testing or analysis.
software engineer to define, conduct, and evaluate Three major classes of testing and analysis are
unit tests and analyses and to assess new techniques discussed-functional, structural, and error-oriented
proposed in the literature. -as well as some hybrid approaches. Functional

testing and analysis ensure that specified major fea-
tures of the software are covered. Structural testing
and analysis ensure that major characteristics of the

O h ilosophy code are covered. Error-oriented testing and anal-
ysis ensure that the range of typical errors is

Program testing and analysis are the most practiced covered. The potential benefits of each major class
means of verifying that a program possesses the fea- are complementary, and no single technique is com-
tures required by its specification. Testing is a prehensive. By specifying the criteria that must be
dynamic approach to verification in which code is satisfied by a test, each technique acts both as
executed with test data to assess the presence (or specifier and evaluator-as specifier by indicating
absence) of required features. Analysis is a static features that must be satisfied by the test data, and as
approach to verification in which required features evaluator by indicating deficiencies in the test data.
are detected by analyzing, but not executing, the Exploring this dual role of test criteria is an impor-
code. Many analysis techniques have become estab- tant facet of this module.
lished technologies with their own substantial litera- Assessment of unit testing and analysis techniques
ture. So that they may be given adequate treatment can be theoretical or empirical. This module
elsewhere, these techniques have been placed out- presents both of these forms of assessment, and dis-
side the scope of this module. Included among these cusses criteria for selecting methods and controlling
techniques are proof of correctness, safety analysis, the verification process.
and the more open-ended analysis procedures Management of unit testing and analysis should berepresented by code inspections and reviews.Maae ntouitesngndnlysshldb

systematic. It proceeds in two stages. First, tech-
This module focuses on unit-level verification; inte- niques appropriate to the project must be selected.
gration and systems verification are to be covered Then these techniques must be systematically ap-
elsewhere. What constitutes a "unit" has been left plied.
imprecise-it may be as little as a single statement
or as much as a set of coupled subroutines. The es-

, ntial characteristic of a unit is that it can meaning-
ly be treated as a whole. Some of the techniques

resented here require associated documentation that
states the desired features of the unit. This docu-
mentation may be a comment in the source program,

SEI-CM-9-1.2 1

Unit Testing and Analysis

Objectives Prerequisite Knowledge

The following is a list of possible educational objec- For the functional testing component, the student
tives based upon the material in this module. Objec- should be able to read algebraic, axiomatic, and
tives for any particular unit of instruction may be functional specifications of software modules. The
drawn from these or related objectives, as may be structural testing component requires knowledge of
appropriate to audience and circumstances. BNF grammars and graphs. If structural analysis
Knowledge tools are to be built, the student needs to have

knowledge of parsing technology, parse trees, and
" Define the basic terminology of testing graph algorithms at the level of an introductory corn-

and analysis (particularly those terms piler construction course. To understand the funda-
found in the glossary or italicized in the mental limitations of testing, the student should be
text). familiar with the halting problem and reduction

" State the theoretical and computational proofs. If underlying foundations of statistical test-
limitations on testing. ing are to be explored in depth, then a full year of

" State the strengths and weaknesses of statistics is a prerequisite. Effective use of the statis-

several testing and analysis techniques. tical models requires one semester of statistics.

Comprehension

* Explain the complementary nature of
functional, structural, and error-oriented
testing and analysis techniques.

* Describe how the choice of testing and
analysis criteria affects the selection and
evaluation of test data.

• Explain the role of error collection as a
feedback and control mechanism.

Application

" Test a software unit using functional,
structural, and error-oriented techniques.

" Use configuration management to con-
trol the process of unit testing and anal-
ysis.

Analysis

* Determine the unit testing and analysis
techniques applicable to a project, based
upon the verification goals, the nature of
the product, and the nature of the testing
environment.

Synthesis

" Write a test plan tailored to accommo-
date project constraints.

" Design software tools to support struc-
tural testing and analysis techniques.

Evaluation

* Evaluate the potential usefulness of new
unit testing and analysis techniques pro-
posed in the literature.

2 SEI-CM-9-1.2

Unit Testing and Analysis

*Module Content

Every effort has been made to adhere to the termi- V. Hybrid Testing Techniques
nology in [IEEE83a] and [IEEE87]. The definition of 1. Structural/functional
"testing" found in [IEEE83a], however, has been 2. Structural/error-based
rejected in favor of distinct definitions for "testing"
and "analysis." These and other significant terms 3. Functional/error-based
used in this module can be found in the glossary, VI. Evaluation of Unit Testing and Analysis
which follows the annotated outline. Techniques

1. Theoretical

2. Empirical
Outline Vii. Managerial Aspects of Unit Testing and

Analysis

I. Preliminaries 1. Selecting techniques

II. Functional Testing and Analysis a. Goals

1. Functional analysis b. Nature of the product

2. Functional testing c. Nature of the testing environment

a. Testing independent of the specification 2. Control
technique a. Configuration control

b. Testing dependent on the specification b. Conducting tests
technique

SIII. Structural Testing and Analysis
1. Structural analysis Annotated Outline

a. Complexity measures
b. Data flow analysis 1. Preliminaries

c. Symbolic execution As with any emerging field, terminology used in pro-
2. Structural Testing gram testing is far from being fixed. There are two

a. Statement testing standards, [IEEE83a] and [IEEE87], that do a credible
b. Branch testing job of clarifying confusing, yet commonly used, terms.

Every effort has been made in this module to adhere to
c. Conditional testing this terminology. An important variance, however, is
d. Expression testing the use of the the two key terms in the title--testing

htesting and analysis. Testing is taken here to refer only to
e. Path texecution-based evaluation of software. It includes the

IV. Error-Oriented Testing and Analysis activities of test data selection, program execution and
1. Statistical methods data collection, and evaluation of results. Analysis is

taken to refer to non-execution-based evaluation of
2. Error-based testing software. In [IEEE83a], testing is given a broader defi-

a. Fault estimation nition, encompassing the notions described by both

b. Domain testing "testing" and "analysis." (See Glossary, page 12.)

c. Perturbation testing Some problems cannot be solved on a computer be-
cause they are either intractible or undecidable. An

3. Fault-based testing intractible problem is one whose best known solution
a. Local extent, finite breadth requires an inordinate amount of resources. An

b. Global extent, finite breadth undecidable problem is one for which no algorithmic
solution is possible in a programming language. There

c. Local extent, infinite breadth are many such intractible and undecidable problems

d. Global extent, infinite breadth associated with testing and analysis. In general, pro-
grams cannot be exhaustively tested (tested for each

SEI-CM-9-1.2 3

Unit Testing and Analysis

input) because to do so is both intractible and undecid- (i) Testing based on the interface
able. Huang shows that to test exhaustively a program
that reads two 32-bit integers takes on the order of 50 Testing based on the interface of a module se
billion years [Huang75]! Even if the input space is lects test data based on the features of the input
smaller, on the very first input it may be the case and output domains of the module and their
the program does not halt within a reasonable time. It interrelationships.
may even be the case that it is obvious the correct (1) Input domain testing
output will be produced if the program ever halts. The
exhaustive test can only be completed, therefore, if all In extremal testing, test data are chosen to
non-halting cases can be detected and eliminated. The cover the extremes of the input domain.
problem of effecting such detection, however, is un- Similarly, midrange testing selects data from
decidable. the interiors of domains. The motivation is

inductive-it is hoped that conclusions
Hl. Functional Testing and Analysis about the entire input domain can be drawn

1. Functional analysis from the behavior elicited by some represen-tative members of it [Myers79]. For struc-
F unctional analysis seeks to verify, w ithout execu- ta e input o fins, co mbination s to uc-

tion, that the code faithfully implements the specifi- tured input domains, combinations of cx-
cation. Various approaches are possible. In proof of tremal points for each component are cho-

correctness, a formal proof is constructed to verify quantity of data, though considerations of

that a program correctly implements its intended the inherent relationships among compo-

function [Berztiss88]. In safety analysis, potentially nent elionhis aong ompo-

dangerous behavior is identified and steps are taken [Howden a].
to ensure such behavior is never manifested
[Leveson87]. (2) Equivalence partitioning

Functional analysis is mentioned here for complete- Specifications frequently partition the set of
ness, but a discussion of it is outside the scope of all possible inputs into classes that receive
this module. equivalent treatment. Such partitioning is

called equivalence partitioning (Myers79].
2. Functional testing A result of equivalence partitioning is the

Program testing is functional when test data are de- identification of a finite set of functions and
veloped from documents that specify a module's in- their associated input and output domains.
tended behavior. These documents include, but are For example, the specification
not limited to, the actual specification and the high- {(x,y)l x>O : y=x & x<0 : y=-x)
and low-level design of the code to be tested partitions the input into two sets, associated,
[Howden80a, Howden8Ob]. The goal is to test for respectively with the identity and negation
each software feature of the specified behavior, in- functions. It taints and egarion
cluding the input domains, the output domains, cate- ditions can also result from this partitioning.
gories of inputs that should receive equivalent proc- dnceonsecn alsoirsult fromthisnparitioningessing, and the processing functions themselves. Once these partitions have been developed,

both extremal and midrange testing are ap-
a. Testing independent of the specification plicable to the resulting input domains.

technique (3) Syntax checking

Specifications detail the assumptions that may be Every robust program must parse its input
made about a given software unit. They must and handle incorrectly formatted data. Veri-
describe the interface through which access to the
unit is given, as well as the behavior once such One means of accomplishing this is to ex-
access is given. The interface of a unit includes ecute the program using a broad spectom of
the features of its inputs, its outputs, and their test data. By describing the data with a BNF
related value spaces (called domains). The grammar, instances of the input language
behavior of a module always includes the can be generated using algorithms from
function(s) to be computed (its semantics), and automata theory. [Duncan81] and [Bazzichi-
sometimes the runtime characteristics, such as its 82] desibe systems that provide limited
space and time complexity. Functional testing control over the data to be generated.
derives test data from the features of the specifi-
cation.

4 SEI-CM-9-1.2

Unit Testing and Analysis

(ii) Testing based on the function to be classes can guide the selection of test data. Much
computed work remains to be done in this area of testing.

Equivalence partitioning results in the identifi- (i) Algebraic
cation of a finite set of functions and their asso-ciatd iputand utpt dmais. Tst atacanIn algebraic specification, properties of a dataciated input and output domains. Test data can asrcinaeepesdb en faim

be developed based on the known characteris- abstraction are expressed by means of axioms

tics of these functions. Consider, for example, or rewrite rules. In one testing system,
a function to be computed that has fixed points, DAISTS, the consistency of an algebraic speci-

i.e., certain of its input values are mapped into fication with an implementation is checked by
themselves by the function. Testing the com- testing [Gannon8l]. Each axiom is compiled
putation at these fixed points is possible, even into a procedure, which is then associated with
in the absence of a complete specification a set of test points. A driver program supplies
[Wyuker82]. Knowledge of the function is es- each of these points to the procedure of its
sential in order to ensure adequate coverage of respective axiom. The procedure, in turn, in-the output domainsu dicates whether the axiom is satisfied. Struc-

tural coverage of both the implementation and

(1) Special value testing the specification is computed. [Jaote83] dis-
cusses another approach in which axioms are

Selecting test data on the basis of features of used to generate test data.
the function to be computed is called special
value testing [Howden8oc]. This procedure (ii) Axiomatic
is particularly applicable to mathematical Despite the potential for widespread use of
computations. Properties of the function to predicate calculus as a specification language,
be computed can aid in selecting points little has been published about deriving test
which will indicate the accuracy of the coin- data from such specifications. [Gourlay8l] ex-
puted solution. For example, the periodicity plores the relationship between predicate cal-
of the sine function suggests use of test data culus specifications and path testing.
values which differ by multiples of 27c.
Such characteristics are not unique to math- (iii) State machines
ematical computations, of course. Most
prettyprinters, for example, when applied to Many programs can be specified as state
their own output, should reproduce it un- machines, thus providing an additional means
changed. Some word processors behave this of selecting test data [Beizer83]. Since the
way as well. equivalence problem of two finite automata is

decidable, testing can be used to decide
(2) Output domain coverage whether a program that simulates a finite

For each function determined by equiv- automaton with a bounded number of nodes isalence partitioning, there is an associated equivalent to the one specified. This result can
output domain. Output domain coverage is be used to test those features of programs that

performed by selecting points that will cause can be specified by finite automata, e.g., the
the extremes of each of the output domains control flow of a transaction-processing sys-

to be achieved (Howden8Oa]. This ensures tem.

that modules have been checked for max- (iv) Decision tables
imum and minimum output conditions and
that all categories of error messages have, if Decision tables are a concise method of
possible, been produced. In general, con- representing an equivalence partitioning. The
structing such test data requires knowledge rows of a decision table specify all the con-
of the function to be computed and, hence, ditions that the input may satisfy. The columns
expertise in the applicatio-' area. specify different sets of actions that may occur.

Entries in the table indicate whether the actions
b. Testing dependent on the specification should be performed if a condition is satisfied.

technique Typical entries are "Yes," "No," or "Don't

The specification technique employed can aid in Care." Each row of the table suggests signif-
tsting.hAnexecutable specification techdcan b d icant test data. Cause-effect graphs [Myers79]testing. An executable specification can be used provide a systematic means of translating

as an oracle and, in some cases, as a test gener- provish seatic ins o tales,

ator. Structural properties of a specification can English specifications into decision tables,

guide the testing process. If the specification falls from which test data can be generated.
within certain limited classes, properties of those

SEI-CM-9-1.2 5

Unit Testing and Analysis

I. Structural Testing and Analysis output can be used to prove the program correct
with respect to its specification, and the path con-

In structural program testing and analysis, test data are dition can be used for generating test data to ex-
developed or evaluated from the source code ercise the desired path. Structured data types
[Howden75]. The goal is to ensure that various charac- cause difficulties, however, since it is sometimes
teristics of the program are adequately covered, impossible to deduce what component is being
1. Structural analysis modified in the presence of symbolic values

[Hantler76].

In structural analysis, programs are analyzed with-

out being executed. The techniques resemble those 2. Structural Testing
used in compiler construction. The goal here is to Structural testing is a dynamic technique in which
identify fault-prone code, to discover anomalous cir- test data selection and evaluation are driven by the
cumstances, and to generate test data to cover spe- goal of covering various characteristics of the code
cific characteristics of the program's structure, during testing [Howden75, Huang75, Myers79]. As-
a. Complexity measures sessing such coverage involves instrumenting the

code to keep track of which characteristics of the
As resources available for testing are always program text are actually exercised during testing.
limited, it is necessary to allocate these resources The inexpensive cost of such instrumentation has
efficiently. It is intuitively appealing to suggest been a prime motivation for adopting this technique
that the more complex the code, the more [Probert82]. More importantly, structral testing ad-
thoroughly it should be tested. Evidence from dresses the fact that only the program text reveals
large projects seems to indicate that a small per- the detailed decisions of the programmer. For ex-
centage of the code typically contains the largest ample, for the sake of efficiency, a programmer
number of errors. Various complexity measures might choose to implement a special case that ap-
have been proposed, investigated, and analyzed in pears nowhere in the specification. The correspond-
the literature. [McCabe83] contains several per- ing code will be tested only by chance using func-
tinent articles, as well as references to others. tional testing, whereas use of a structural coverage

measure such as statement coverage should indicate
b. Data flow analysis the need for test data for this case. Structural

A program can be represented as a flow graph coverage measures form a rough hierarchy, with
annotated with information about variable higher levels being more costly to perform and ana-
definitions, references, and undefinitions. From lyze, but being more beneficial, as described below.
this representation, infon-ation about data flow a. Statement testing
can be deduced for use in code optimization,
anomaly detection, and test data generation Statement testing requires that every statement in
[Hecht77, Muchnick8l]. Data flow anomalies are the program be executed. While it is obvious that
flow conditions that deserve further investigation, achieving 100% statement coverage does not en-
as they may indicate problems. Examples in- sure a correct program, it is equally obvious that
clude: defining a variable twice with no interven- anything less means that there is code in the pro-
ing reference, referencing a variable that is un- gram that has never been executed!
defined, and undefining a variable that has not
been referenced since its last definition. Algo- b. Branch testing
rithms for detecting these anomalies are given in Achieving 100% statement coverage does not en-
[Fosdick76] and [Osterweil76] and are refined and sure that each branch in the program flow graph
corrected in [Jachner84]. Data flow analysis can has been executed. For example, executing an if
also be used in test data generation, exploiting the ... then statement (no else) when the tested con-
relationship between points where variables are dition is true, tests only one of two branches in
defined and points where they are used [Rapps85, the flow graph. Branch testing seeks to ensure
Laski83, Ntafos84]. that every branch has been executed [Huang75].

c. Symbolic execution Branch coverage can be checked by probes in-
serted at points in the prograi,. ,at represent arcs

A symbolic execution system accepts three inputs: from branch points in the flow graph [Probert82].
a program to be interpreted, symbolic input for the This instrumentation suffices for statement
program, and the path to follow. It produces two coverage as well.
outputs: the symbolic output that describes the
computation of the selected path, and the path c. Conditional testing
condition for that path. The specification of the In conditional testing, each clause in every con-
path can be either interactive [Clarke76] or pre- dition is forced to take on each of its possible
selected [Howden77, Howden78b]. The symbolic values in combination with those of other clauses

6 SEI-CM-9-1.2

Unit Testing and Analysis

[Huang75]. Conditional testing thus subsumes IV. Error-Oriented Testing and Analysisbranch testing and, therefore, inherits the sameproblems as branch testing. Instrumentation for Testing is necessitated by the potential presence of er-conditional testing can be accomplished by break- rors in the programming process. Techniques thating compound conditional statements into simple focus on assessing the presence or absence of errors iningcomdconditionsl a g teet in stemle the programming process are called error-oriented.There are three broad categories of such techniques:
d. Expression testing statistical assessment, error-based testing, and

fault-based testing. These are stated in order of in-Expression testing [Ham lat7a] requires that every creasing specificity of what is wrong with the program.
expression assume a variety of values during a Statistical methods attempt to estimate the failure rate
test in such a way that no expression can be re- of the program without reference to the number of
placed by a simpler expression and stiil pass the remaining faults.

test. If one assumes that every statement contains

an expression and that conditional expressions Error-based testing attempts to show the absence of
form a proper subset of all the program expres- certain errors in the programming process. Fault-based
sions, then this form of testing properly subsumes testing attempts to show the absence of certain faults in
all the previously mentioned techniques. Expres- the code. Since errors in the programming process are
sion testing does require significant runtime sup- reflected as faults in the code, both techniques demon-
port for the instrumentation [Hamlet77b]. strate the absence of faults. They differ, however, in

their starting point: error-based testing begins with the
e. Path testing programming process, identifies potential errors in that

In path testing, data are selected to ensure that all process and then asks how those errors are reflected as
paths of the program have been executed. In faults. It then seeks to demonstrate the absence of
practice, of course, such coverage is impossible to those reflected faults. Fault-based testing begins with
achieve, for a variety of reasons. First, any pro- the code and asks what are the potential faults in it,
gram wit. ,,n indefinite loop contains an infinite regardless of what error in the programming process
number of paths, one for each iteration of the caused them.
loop. Thus, no finite set of data will execute all 1. Statistical methodsSpaths. The second difficulty is the infeasible path
problem: it is undecidable whether an arbitrary Statistical testing employs statistical techniques to
path in an arbitrary program is executable. At- determine the operational reliability of the program.
tempting to generate data for such infeasible paths Its primary concern is how faults in the program
is futile, but it cannot be avoided. Third, it is affect its failure rate in its actual operating environ-
undecidable whether an arbitrary program will ment. A program is subjected to test data that statis-
halt for an arbitrary input. It is therefore impos- tically model the operating environment, and failure
sible to decide whether a path is finite for a given data are collected. From these data, a reliability es-
input. timate of the program's failure rate is computed.

[Currft86] explains this method for use in an in-In response to these difficulties, several simplify- cremental development environment and cites other
ing approaches have been proposed. Infinitely relevant sources. A statistical method for testing
many paths can be partitioned into a finite set of paths that compute algebraic functions is given in
equivalence classes based on ,: aracteristics of the [DeMillo78bI. There has been a prevailing sentiment
loops. Boundary and interior testing require ex- that statistical testing is a futile activity, since it is
ecuting loops zero times, one time, and, if pos- not directed toward finding errors [DeMillo78a,
sible, the maximum number of times [Howden75]. Myers79]. However, studies suggest it is a viable
Linear sequence code and jump criteria [Wood- alternative to structural testing [Duran8O, Duran84].
ward80] specify a hierarchy of successively more Combining statistical testing with an oracle appears
complex path coverage. [Howden78a], [TaiSO], to represent an effective tradeoff of computer
[Gourlay83], and [Weyuker86] suggest methods of resources for human time [Panz181 I.
studying the adequacy of structural testing.

2. Error-based testing
Path coverage does not imply condition coverage
or expression coverage since an expression may Error-based testing seeks to demonstrate that certain
appear on multiple paths but some subexpressions errors have not been committed in the programming
may never assume more than one value. For ex- process [Weyuker83]. Error-based testing can be
ample, in driven by histories of programmer errors, measures

if avb then S else S of software complexity, knowledge of error-prone
s 2 syntactic constructs, or even error guessingb may be false and yet each path may still be [Myers79]. Some of the more methodical techniques

executed. are described below.

SEI-CM-9-1.2 7

Unit Testing and Analysis

a. Fault estimation a. Local extent, finite breadth

Fault seeding is a statistical method used to as- In [Hamlet77a] and [Hamlet77b], a system built
sess the number and characteristics of the faults into a compiler to judge the adequacy of test data
remaining in a program. A reprint of Harlan is described. Input-output pairs of data are en-
Mills' original proposal for this technique (where coded as a comment in a procedure, as a partial
he calls it error seeding) appears in [Mills83]. specification of the function to be computed by
First, faults are seeded into a program. Then the that procedure. The procedure is then executed
program is tested, and the number of faults dis- for each of the input values and checked for the
covered is used to estimate the number of faults output values. The test is considered adequate
yet undiscovered. A difficulty with this technique only if each computational or logical expression
is that the faults seeded must be representative of in the procedure is determined by the test; i.e., no
the yet-undiscovered faults in the program. expression can be replaced by a simpler expres-
Techniques for predicting the quantity of remain- sion and still pass the test Simpler is defined in a

way that allows only finitely many substitutions.
ing faults can also be based on a reliability model. Thus, as the procedure is executed, each possible
A survey of reliability models is found in substitution is evaluated on the data state
[Ramamoorthy82]. presented to the expression. Those that do not

b. Domain testing evaluate the same as the original expression are
rejected. The system allows methods of speci-

The input domain of a program can be partitioned fying the extent to be analyzed.
according to which inputs cause each path to be
executed. These partitions are called path b. Global extent, finite breadth
domains. Faults that cause an input to be associ- In mutation testing, test data adequacy is judged
ated with the wrong path domain are called by demonstrating that interjected faults are
domain faults. Other faults are called computa- caught. A program with interjected faults is
tionfaults. (The terms used before attempts were called a mutant, and is produced by applying a
made to rationalize nomenclature were "domain mutation operator. Such an operator changes a
errors" and "computation errors.") The goal of single expression in the program to another ex-
domain testing is to discover domain faults by pression, selected from a finite class of expres-
ensuring that test data limit the range of un- sions. For example, a constant might be incre-
detected faults [White80]. [Clarke82] refines the mented by one, decremented by one, or replaced
fault detection capability of this approach. by zero, yielding one of three mutants. Applying

c. Perturbation testing the mutation operators at each point in a program
where they are applicable forms a finite, albeit

Perturbation testing attempts to decide what con- large, set of mutants. The test data are judged
stitutes a sufficient set of paths to test. Faults are adequate only if each mutant in this set is either
modeled as a vector space, and characterization functionally equivalent to the original program or
theorems describe when sufficient paths have computes different output than the original pro-
been tested to discover both computation and gram. Inadequacy of the test data implies that
domain errors. Additional paths need not be certain faults can be introduced into the code and
tested if they cannot reduce the dimensionality of go undetected by the test data.
the error space [Zei183]. Mutation testing is based on two hypotheses. The

3. Fault-based testing competent programmer hypothesis says that a
competent programmer will write code that isFault-based testing aims at demonstrating that cer- close to being correct; the correct program, if not

tain prescribed faults are not in the code. It func- the current one, can be produced by some
tions well in the role of test data evaluation: test thtfrrnt ac ce o he code

datatha do ot ucced i dicoveingthestraightforward syntactic changes to the code.
data that do not succeed in discovering the The coupling effect hypothesis says that test data
prescribed faults are not considered adequate. Fault- that reveal simple faults will uncover complex
based testing methods differ in both extent and faults as well. Thus, only single mutants need be
breadth. One with local extent demonstrates that a eliminated, and combinatoric effects of multiple
fault has a local effect on computation; it is possible mutants need not be considered [DeMillo78a].that this local effect wili not produce a program [Gurlay83] formally characterizes the competent
failure. A method with global extent demonstrates programmer hota afction the prte-
that a fault will cause a program failure. Breadth is amme hytes s eincion of the
determined by whether the technique handles a finite ability of the test set's being reliable (as defined w
orminfinted class whets. xtene handlbread ar by Gourlay) and shows that under this charac-or an infinite class of faults. Extent and breadth are terization, the hypothesis does not hold. Empiri-
orthogonal, as evidenced by the techniques de- calijutificateonyothe copln t has Een
scribed below. cal justification of the coupling effect has been

8 SEI-CM-9-1.2

Unit Testing and Analysis

attempted [DeMillo78a, Budd80], but theoretical ing system DAISTS predates and automates this
analysis has shown that it is doeq not hold, even technique for algebraic specifications of abstract
for simple programs (Morel183]. data types, but it does not include any notion ofproof of correctness [Gannon8l]. Furthermore, thec. Local extent, infinite breadth emphasis in DAISTS is on test data evaluation,

[Foster80] describes a method for selecting test rather than generation. [Goodenough75] presents a
data that are sensitive to errors. Howden has for- less formal, integrated scheme for selecting test data
malized this approach in a method called weak based on analysis of sources of errors in the pro-
mutation testing [Howden82]. Rules for recog- gramming process.
nizing error-sensitive data are described for each 2. Structural/error-based
primitive language construct. Satisfaction of a
rule for a given construct during testing means This area has concentrated on data flow faults in
that all alternate forms of that construct have been which values computed at one location in the pro-
distinguished. This has an obvious advantage gram are misused at another location. Discovering
over mutation testing-elimination of all mutants these faults requires information derived from data
without generating a single one! Some rules even flow analysis of the program [Laski83, Ntafos84,
allow for infinitely many mutants. Of course, Rapps85]. A promising area of research is the use
since this method is of local extent, some of the of models of program faults to guide test data selec-
mutants eliminated may indeed be the correct pro- tion. Code complexity measures can be used to
gram. [Morel183] extends this method for global identify segments of the program to be subjected to
extent. intensive testing.

d. Global extent, infinite breadth 3. Functional/error-based

[More1183] and [Morel187] define a fault-based Research in this area has been slow because error-
method based on symbolic execution that permits based data applicable to functional testing is difficult
elimination of infinitely many faults through to collect, difficult to assess, and frequently pro-
evidence of global failures. Symbolic faults are prietary [Glass8l, Ostrand84]. It is possible that
inserted into the code, which is then executed on fault seeding combined with statistical testing may
real or symbolic data. Program output is then an prove to be a useful method.
expression in terms of the symbolic faults. It thus
reflects how a fault at a given location will impact VI. Evaluation of Unit Testing and Analysis
the program's output. This expression can be Techniques
used to determine actual faults that could not have The effectiveness of unit testing and analysis may be
been substituted for the symbolic fault and remain evaluated on theoretical or empirical grounds
undetected by the test. [Howden78a]. Theory seeks to understand what can be

V. Hybrid Testing Techniques done in principle; empirical evaluation seeks to estab-
lish what techniques are useful in practice. Theory

Since it is apparent that no one testing technique is formally defines the field and investigates its funda-
sufficient, some people have investigated ways of inte- mental limitations. For example, it is well known that
grating several techniques. Such integrated techniques testing cannot demonstrate the correctness of an ar-
are called hybrid testing techniques. These are not just bitrary program with respect to an arbitrary specifi-
the concurrent application of distinct techniques; they cation. This does not mean, however, that testing can
are characterized by a deliberate attempt to incorporate never verify correctness; indeed, in some cases it can
the best features of different methods into a new [Howden78c]. Empirical studies evaluate the utility of
framework. various practices. While statement testing is theoreti-

cally deficient, it is immensely useful in practice,
.tructural/fnction catching many program faults.

In partition analysis, test data are chosen to ensure IEEE has sponsored four workshops on testing between
simultaneous coverage of both the specification and 1978 and 1988. Proceedings are published for only the
code [Richardson85]. An operational specification most recent of the three [WST88]. The National Bu-
language has been designed that enables a structural reau of Standards has issued a special publication that
measure of coverage of the specification. The input describes most of the techniques mentioned in this
space is partitioned into a set of domains that is module and characterizes each approach according to
formed by the cross product of path domains of the e and cat s eah ao cori to
specification and path domains of the program. Test effectiveness, applicability, learning, and cost [NBS82].
data are selected from each non-empty partition, en- 1. Theoretical
suring simultaneous coverage of both specification
and code. Proof of correctness techniques can also Theory serves three fundamental purposes: to define
be applied to these cross product domains. The test- terminology, to characterize existing practice, and to

SEI-CM-9-1.2 9

Unit Testing and Analysis

suggest new avenues of exploration. Unfortunately, ing, the nature of the software product, and the na-
current terminology is inconsistent. A simple ex- ture of the test environment. It is important to re- ,
ample is the word reliable, which is used by authors member the complementary benefits of the various
in related, but varying ways. (Compare, for ex- techniques and to select as broad a range of tech-
ample, [Goodenough75], [Howden76], [Duran81], niques as possible, within imposed limits. No single
[Hamlet8l], and [Richardson85], and do not include testing or analysis technique is sufficient. Function-
any authors from reliability theory!) I1EEE83a] is a al testing suffers from inadequate code coverage,
good starting point for examining terminology, but it structural testing suffers from inadequate specifica-
is imprecise in places and was established many tion coverage, and neither technique achieves the
years after certain (in retrospect, unfortunate) termi- benefits of error coverage.
nology had become accepted. 1 Theoretical treat-
ments of topics in program testing are few. a. Goals

Goodenough and Gerhart, in [Goodenough75], made Different design goals impose different demands
an attempt to rationalize terminology, though this on the selection of testing techniques. Achieving
work has been criticized, particularly in correctness requires use of a great variety of tech-
[Weyuker8O]. Nevertheless, they anticipated the vast niques. A goal of reliability implies the need for
majority of practical and theoretical issues that have statistical testing using test data representative of
since evolved in program testing. [Goodenough75] those of the anticipated user environment. It
is therefore required reading. Howden and Weyuker should be noted, however, that proponents of this
have both written theoretical expositions on func- technique still recommend judicious use of
tional and structural testing [Howden76, "selective" tests to avoid embarrassing or dis-
Howden78a, Howden78c, Howden82, Howden86, astrous situations [Currit86]. Testing may also be
Weyuker8O, Weyuker82, Weyuker83, Rapps85, directed toward assessing the utility of proposed
Weyuker84, Weyuker86]. Theoretical expositions of software. This kind of testing requires a solid
mutation and fault-based testing are found in foundation in human factors [Shneiderman79,
[Hamlet77a], [Hamlet8l], [Budd82], [Gouday81], Perlman88]. Performance of the software may
[Gourlay83], and [Morel183]. also be of special concern. In this case, extremal

2. Empirical testing is essential. Timing instrumentation can
prove useful.

Empirical studies provide benchmarks by which to
judge existing testing techniques. An excellent corn- Often, several of these goals must be achieved

parison of techniques is found in [Howden8Ob], simultaneously. One approach to testing under

which emphasizes the complementary benefits of these circumstances is to order testing by decreas-

structural and functional testing for scientific pro- ing benefit. For example, if reliability, correct-

grams. Empirical studies of mutation testing are dis- ness, and performance are all desired features, it

cussed in [BuddSO]. Many articles that report experi- is reasonable to tackle performance first, reli-

ence with various testing techniques appear in the ability second, and correctness third, since these

proceedings of the ACM Symposium on Principles goals require increasingly difficult-to-design tests.

of Programming Languages, the International Con- This approach can have the beneficial effect of

ference on Software Engineering, and the Computer identifying faulty code with less effort expended.

Software and Applications Conference. b. Nature of the product

VII. Managerial Aspects of Unit Testing and The nature of the software product plays an im-
Analysis portant role in the selection of appropriate tech-

Administration of unit testing and analysis proceeds in niques. Four types of software products are dis-

two stages. First, techniques appropriate to the project cussed below.

must be selected. Then these techniques must be sys- (i) Data processing
tematically applied. [IEEE87] provides explicit guid-
ance for these steps. Data processing applications appear to benefit

from most of the techniques described in this
1. Selecting techniques module. Conventional languages such as

Selecting the appropriate techniques from the array COBOL are frequently used, increasing the

of possibilities is a complex task that requires as- likelihood of finding an instrumented compiler

sessment of many issues, including the goal of test- for doing performance and coverage analysis.
Functional test cases are typically easy to iden-
tify. Even domain testing, with its many
restrictions, seems applicable, since most
predicates in data processing programs are

'For nsunm the ,nmnology error.based testing and error seeding linear [White80.
became well-established long before the swidard told us to usefault.

10 SEI-CM-9-1.2

Unit Testing and Analysis

(ii) Scientific computation timately, the code must execute on the em-
Sabedded computer in its operational environ-
Howden analyzed a variety of static and ment. Operational testing is performed in this
dynamic testing and analysis techniques on the environment.
IMSL routines [Howden80b]. He concluded
that functional and structural testing are corn- Unit testing in an operational environment is
plementary, that neither is sufficient, and that rarely possible. The equipment is seldom
sometimes a hybrid approach is necessary to available and may lack conventional input and
simultaneously cover extremal values while ex- output. In these cases, the embedded computer
ecuting a particular path. Static methods found can be placed in a controlled environment that
fewer errors in Howden's study, but their ear- simulates the operational one. This provides
lier application in the life cycle may increase the capability of conducting a system test.
their effectiveness. Timing constraints must be verified here. To

assess time-critical software, it is essential to
Extremal value testing and special value testing collect data in as unobtrusive a manner as pos-
are vital to scientific programs. Statistical test- sible. Typically, this requires hardware in-
ing is perhaps less appropriate, since these pro- strumentation, though software breakpoints
grams are frequently constructed to solve prob- sometimes suffice. Data from several points of
lems whose characteristics are not known in instrumentation must be coordinated and
advance. The IMSL package illustrates this; analyzed; such a process is called data
the designers of the package cannot make reduction.
"'reasonable" assumptions about the distribu-
tion of arguments to the sine routine, for in- If the simulated environment does not support
stance. unit testing, the embedded computer itself must

be abstracted. The software can be written in
(iii) Expert systems assembly language, and the embedded comput-

Expert systems pose unique challenges to veri- er can be simulated on another machine; or the
fication. Structural testing is of little use, since software can be written in a high-level lan-
the behavior of the system is dominated by the guage, such as Ada, which can be cross-
knowledge base. Difficulties arise in assuring compiled to the target machine. At this level
the consistency of this knowledge base. This of abstraction, unit testing and analysis are pos-
problem is compounded by the reliance on sible. The goal during this stage is to assess
human experts, since precise behavior is diffi- correctness of individual units. Functional
cult to specify. A good survey of the problems testing is essential, especially extremal, mid-
related to validation of expert systems appears range, and special value testing, since it is im-
in [Hayes-Roth83]. possible to ensure these tests will occur during

integration or system testing. Data flow anal-
Three steps can be identified as minimal re- ysis of the code, especially if the system is
quirements for verification of an expert system. written in assembly language, is appropriate.
First, it is necessary to clean up the knowledge A simulator can be instrumented to collect nec-
base in much the same manner as is done for a essary code coverage statistics.
BNF grammar. Inconsistencies must be de-
tected, redundancies eliminated, loops broken, c. Nature of the testing environment
etc. Symbolic execution and data flow analysis Available resources, personnel, and project con-
appear to be applicable to this stage. Second, straints must be considered in selecting testing
each piece of information in the knowledge and analysis strategies.
base must be exercised. Mutation analysis ap-
plied to the knowledge base detects the infor- (i) Available resources
mation whose change does not affect the output Available resources frequently determine the
and, thus, is not sufficiently exercised. Third, exte o res s frequently deter tin -testcas desgn nd ealutionmus be on-extent of testing. If the compiler does not in-
ducted by experts in the application domain. strument code, if data flow analysis tools arenot at hand, if exotic tools for mutation testing

(iv) Embedded and real-time systems or symbolic evaluation are not available, one
must perform functional testing and hand in-

Embedded and real-time systems are perhaps strument the code to detect branch coverage.
the most complex systems to specify, design, Hand instrumentation is not difficult, but it is
and implement. It is no surprise that they are an error-prone and time consuming process.
particularly hard to verify. Embedded com- Editor scripts can aid in the instrumentation
puter systems typically have inconvenient in- process. If resources permit, successively
terfaces for defining and conducting tests. UI- more complex criteria involving branch testing,

SEI-CM-9-1.2 11

Unit Testing and Analysis

data flow testing, domain testing, and fault- b. Conducting tests
based testing can be tried. A test bed is an integrated system for testing soft-

(ii) Personnel ware. Several such systems exist, for example,
AUT [Panz178], RXVP [Miler74], TPL/F [Panzl-

No technique is without its personnel costs. 78], MTB [Miller81 a], LDRA [Hennel183, Wood-
Before introducing any new technique or tool, ward80], IVTS [Senn83], and, to a limited extent,
the impact on personnel must be considered. SimplT [Hamlet77b] and DAISTS [Gannon81].
The advantages of any approach must be Minimally, these systems provide the ability to
balanced against the effort required to learn the define a test case, construct a test driver, execute
technique, the ongoing time demands of apply- the test case, and capture the output. Additional
ing it, and the expertise it requires. Domain facilities provided by such systems typically in-
testing can be quite difficult to learn. Data dlude data flow analysis, structural coverage as-
flow analysis may uncover many anomalies sessment, regression testing, test specification,
that are not errors, thereby requiring personnel and report generation.
to sort through and distinguish them. Special
value testing requires expertise in the applica-
tion area. Analysis of the impact on personnel
for many of the techniques in this module can
be found in [NBS821. Glossary

(iii) Project constraints The following terminology is used throughout the

The goal in selecting testing and analysis tech- module, except possibly in the abstracts in the bibli-
niques is to obtain the most benefit from test- ography. Additional terms are defined in the text.
ing within the project constraints. Testing is Note that the literature is replete with inconsistencies
indeed over when the budget or the time al- in the use of such terms as "error," "failure," and
lotted to it is exhausted, but this is not an ap- "fault." Consistent use of these terms has been at-
propriate definition of when to stop testing
[Myers79]. Estimates indicate that approxi- tempted here, but such consistency may itself lead to
mately 40% of software development time is confusion in the many cases where "modem" usage
used in the testing phase. Scheduling must conflicts with usage prevalent in the literature.
reflect this fact.

2. Control analysis
The process of evaluating without execution a

To ensure quality in unit testing and analysis, it is system or system component to verify that it sat-
necessary to control both documentation and the isfies specified requirements. (Cf. definition of
conduct of the test. "testing" in [IEEE83a].)

a. Configuration control coverage

Several items from unit testing and analysis Used in conjunction with a software feature or
should be placed under configuration manage- characteristic, the degree to which that feature or
ment, including the test plan, test procedures, test characteristic is tested or analyzed. Examples
data, and test results. A formal description of
these and related items is found in [IEEE83b]. include input domain coverage, statement
The test plan specifies the goals, environment, coverage, branch coverage, and path coverage.
and constraints imposed on testing. The test pro-
cedures detail the step-by-step activities to be per- error
formed during the test. Regression testing occurs Human action that results in software containing
when previously saved test data are used to test a fault [IEEE83a].
modified code. Its principal advantage is that it
ensures previously attained functionality has not failure
been lost during a modification. Test results are
recorded and analyzed for evidence of program
failures. Failure rates underly many reliability to perform a required function within specified
models [Ramamoorthy82]; high failure rates may limits [IEEE83a].
indicate the need for redesign.

fault
A manifestation of an error in software
[IEEE83a].

12 SEI-CM-9-1.2

Unit Testing and Analysis

oracle.A mechanized procedure that decides whether a
given input-output pair is acceptable.

software characteristic
An inherent, possibly accidental, trait, quality, or
property of software [IEEE87].

software feature
A software characteristic specified or implied by
requirements documentation [IEEE87].

test bed
A test environment containing the hardware, in-
strumentation tools, simulators, and other sup-
port software necessary for testing a system or a
system component [IEEE83a].

test data
Data developed to test a system or system com-
ponent [IEEE83a].

testing
The process of executing a system or system
component on selected test data to verify that it.satisfies specified requirements. (Cf. definition
of "testing" in [IEEE83a].)

unit
Code that is meaningful to treat as a whole. It
may be as small as a single statement or as large
as a set of coupled subroutines.

verification
The process of determining whether or not the
products of a given phase of the software devel-
opment cycle fulfill the requirements established
during the previous phase [IEEE83a].

SEI-CM-9-1.2 13

Unit Testing and Analysis

Teaching Considerations

Textbooks springboard for understanding the complicated is-
sues in verification.

There are currently three books on the subject of Suggested coverage:
testing and analysis. (Myers79] is the least compre- e Theory (1.0)
hensive, but it provides a good overview of struc-
tural coverage and some functional testing. It can • Functional Testing and Analysis (4.0)
still serve well as a supplementary text in an intro- * Structural Testing and Analysis (4.0)
ductory software engineering course. (Beizer831 is e Error-based Testing and Analysis (3.0)
eclectic, containing more dynamic testing techniques
than any other reference. It does not cover static * Managerial Aspects (3.0)
methods, such as data flow analysis and symbolic Total: 15 hours
execution. The text is written in a style that will
captivate the student's attention, however, and it Graduate Seminar on Testing and Analysis. As
references many actual projects. [Howden87] is the indicated in the table in Suggested Reading Lists,
first text to approach testing and analysis from a there is a wealth of material to support a graduate
unified framework. It contains the necessary theo- seminar in testing. The entire outline of this module
retical and practical background and could be used can be covered, with additional topics included as
as a text for a graduate seminar, deemed appropriate. The suggestions given below

For a full appreciation of issues, each of these texts focus on how this material can be taught in a semi-

will have to be supplemented by readings from the nar format.

current literature. Suggested Reading Lists (page 15) The instructor delivers an introductory lecture in
contains a table categorizing the bibliography entries each of the major topic areas. Lectures should be
according to potential use. based on papers from the "essential" category

(column 1 of the table). A subset of papers from the
"recommended" list (column 2) is selected to be read
by all students; one student should act as presenter

Suggested Schedules for each paper. For this approach to succeed, papers
and presenters must be selected well in advance, and

The following are suggestions for using the material both presenters and participants must be prepared.

in this module. The parenthesized numbers repre- To ensure this advanced preparation, the instructor

sent approximate number of lecture hours allocated should:
for each topic. e Approve all paper selections.

e Meet with each presenter at least two
One-Term Undergraduate Introduction to Soft- weeks in advance of the presentation to
ware Engineering. The large quantity of material answer questions, determine presentation
to be covered in this course makes it difficult to deal format, and together write a set of ex-
with any topic in depth. The following minimum ercises for the other students.
coverage of unit testing and analysis issues is sug- *Distribute the assigned reading as soon
gested: as possible and the set of exercises at

" Theory (0.5) least one week in advance of the presen-
* Functional Testing and Analysis (1.5) tation.

" Structural Testing and Analysis (1.5) * Be prepared to assist each student at his

* Managerial Aspects (1.5) presentation, if necessary.

Total: 5.0 hours This approach requires discipline on everyone's part.

Broad coverage of material is aided by requiring
Undergraduate Course on Verification Tech- each student to write a term paper in one of the areas
niques. A course covering proof of correctness, re- related to the course. Readings listed in the
view techniques, and testing and analysis provides a "essential" and "recommended" columns provide

14 SEI-CM-9-1.2

Unit Testing and Analysis

breadth, while those categorized as "detailed" or group, which, in turn, receives only the source code
"expert" provide depth. from the functional group. After testing is complete,
Suggested coverage: the groups compare results. Roles of the two groups

can then be reversed.
" Background and Theory (5.0) Testing tools are prime candidates for projects.

" Functional Testing and Analysis Rudimentary testbeds, data flow analyzers, and code
* Testing independent of the specifi- instrumenters can be implemented in one term.

cation technique (6.0) Tools developed during one term can serve both as
* Testing dependent on the specifica- the test tools and the test objects for the next.

tion technique (3.0)
" Structural Testing and Analysis

* Static analysis (6.0) Suggested Reading Lists
* Testing (3.0)

" Error-Oriented Testing and Analysis The following lists categorize items in the bibliog-
* Statistical methods (2.0) raphy by applicability. "Essential" reading is ex-
* Error-based testing (4.0) actly that. "Recommended" reading provides addi-

tional background. "Detailed" reading indicates pa-
" Fault-based testing (3.0) pers with narrow scope. These papers can serve as

" Hybrid Testing Techniques (3.0) the basis for a class project. "Expert" reading is for
* Evaluation of Unit Testing and Analysis those who have a good background in a particular

" Theoretical (3.0) area; this category contains mostly theoretical
papers. Coverage of the first two categories, includ-

* Empirical (1.0) ing one detailed area, is about all that can be ex-
" Managerial Aspects of Unit Testing and pected in a single term.

*Analysis
1 Selecting techniques (1.0)
o Configuration items (1.0)
o Testbeds (1.0)

Total: 42 hours

Exercises

It is not sufficient merely to study techniques-they
must be applied to software and evaluated. For-
tunately there is no lack of software to be verified!
The traditional projected-oriented software engineer-
ing course clearly should have a testing component.
If a testing seminar is held concurrently with such a
course, the students taking the seminar can act as an
independent test organization, as tool builders, as
consultants, etc. for the software engineering class.
Alternatively, programs can be obtained from anoth-
er class or from industry for sustained testing.

In a testing seminar, the complementary benefits of
functional and structural testing can be illustrated by.dividing the seminar participants into two groups.
Have each group produce a specification and fault-
filled program. The functional group receives the
specification and object code from the structural

SEI-CM-9-1.2 15

Unit Testing and Analysis

Paper Categories

Essential Recommended Detailed Expert

Clarke82 Duran8l Bazzichi82 Budd82
Curnit86 Foster8O Budd8O DeMilfo78b
DeMillo78a Gannon8l Clarke76 Gourlay8l
Duran84 Gtass~l Duncan8l Gourlay83
Fosdick76 Hamlet77b Duran8O Hamiet8l
Gerhart76 Howden78a Hamlet77a Howden78c
Goodenough75 Howden8Oa Henne1183 MoreII83
Hantler76 Howden82 Howden75 More1187
Howden76 Huang75 Howden77 Ramamoorthy82
Howden8Ob Jachner84 Howden78b Weyuker83
Howden8Oc Kemmerer85 Jalote83 Weyuker84
Howden86 Laski83 Miller74 Weyuker86
IEEE83a NBS82 MiIler8lb
IEEE83b Ostrand84 Ntafos84
IEEE87 Panz178 Osterweil76
Richardson85 Probert82 Panz18l
Weyuker8O Rapps85 Redwine83
Whfte8O Tai8O Roussopoulos85

Weyuker82 Rowland8l
Woodward8O Senn83
Zei183 Weiser84

White85

16 SEI-CM-9-1 .2

Unit Testing and Analysis

Bibliography

The following annotations include comments about 3. Flowcharts and Path Testing
the value of each work to the instructor and student. 4. Path Testing and Transaction Flows
Works identified as "recommended reading" or 5. Graphs, Paths and Complexity
"should be read" provide necessary background 6. Paths, Path Products, and Regular Ex-

reading. Items labeled "could prove useful" are nar- pressions

row in scope and of limited applicability. Papers de- 7. Data Validation and Syntax Testing
8. Data-Base-Driven Test Design

scribed as "for experts only" should be reserved for 9. Decision Tables and Boolean Algebra
student punishment. 10. Boolean Algebra the Easy Way

Several of the following articles are reprinted in the 11. States, State Graphs, and Transition Test-

tutorial by Miller and Howden [Miller8l a]; they are ing

so noted. 12. Graph Matrices and Applications

Bazzlchi82 Berztlss88
Berztiss, Alfs and Mark A. Ardis. Formal Verifica-Bazzichi, Franco, and Ippolito Spadafora. "An Auto- tion of Programs. Curriculum Module SEI-

maie Generator for Compiler Testing." IEEE Trans. CM-20-1.0, Software Engineering Institute, Came-
Software Eng. SE-8, 4 (July 1982). 343-353. gie Mellon University, Pittsburgh, Pa., 1988.

Abstract: A new method for testing compilers is
presented The compiler is exercised by compatible Budd8O
programs, automatically generated by a test gener- Budd, Timothy A., Richard A. DeMillo, Richard
ator. The generator is driven by a tabular descrip- J. Lipton, and Frederick G. Sayward. "Theoretical
tion of the source language. This description is in a and Empirical Studies on Using Program Mutations. formalism which nicely extends context-free gram-
mars in a context-dependent direction, but still to Test the Functional Correctness of Programs."
retains the structure and readability of BNF. The Conf. Record 7th Annual ACM Symposium on Prin-
generator produces a set of programs which cover ciples of Prog. Lang. New York: ACM, Jan. 1980,
all grammatical constructions of the source lan- 220-233.
guage, unless user supplied directives instruct Tis paper presents little-nown results on mutation
otherwise. The programs generated can also be testing, including both theoretical and empirical
used to evaluate the performance of different com- tes. The theoretical an em alpilers of the same source language. studies. The theoretical section can be safely ig-

nored, except for the analysis of decision tables and

A significant example from Pascal is presented, and straight-line Lisp programs. The empirical results
experience with the generator is reported. are more interesting, since they provide insight into

The approach taken here is one similar to that of a the mutant operators used and their success on
two-level grammar for specifying context sensitiv- buggy programs.
ity. The problems inherent in specifying semantic The theoretical section is useful only for those who
constraints on a programming language are clearly wish to pursue mutation testing at an expert level.
presented. However, the presentation is difficult to The empirical section is of some use in demonstrat-
understand without consulting the references in the ing when mutation testing does and does not work.
bibliography.

This paper or [Duncan8l] should be read by the in- Budd82
structor. It is a difficult paper for students, though Budd, Timothy A., and Dana Angluin. "Two No-
its goal should be apparent. tions of Correctness and Their Relation to Testing."

Acta Informatica 18, 1 (1982), 31-45.
Belzer83 Abstract: We consider two interpretations for what
Beizer, Boris. Software Testing Techniques. New it means for test data to demonstrate correctness.
York: Van Nostrand, 1983. For each interpretation, we examine under what

able of Contents conditions data sufficient to demonstrate correct-
1. Idu ness exists, and whether it can be automatically de-

. ntro uction tected and/or generated. We establish the relation
2. The Taxonomy of Bugs between these questions and the problem of decid-

ing equivalence of two programs.

SEI-CM-9-1.2 17

Unit Testing and Analysis

This article requires a good background in computa- alternative domain testing strategies, which im-
bility theory. A theoretical analysis of mutation prove on the error bound, are then proposed and
testing is presented in excellent style. the complexity of each of the three strategies is

Thispapr isforexpets.Stuentswitout corseanalyzed. Finally, several other issues that must be
This paper is for experts. Students without a course addressed by domain testing are presented and thein computability will be lost, general applicability of this method is discussed.

Clarke76 This paper recommends the selection of additional
Clarke, Lori A. "A System to Generate Test Data test points to narrow the range of domain shifts that
and Symbolically Execute Programs." IEEE Trans. remain undetected by the domain testing strategy

Software Eng. SE-2, 3 (Sept. 1976), 215-222. suggested in [White80], which is essential prereq-
uisite reading. The paper makes several important

Abstract: This paper describes a system that at- suggestions for relaxing the restrictions of
tempts to generate test data for programs written in [White80].
ANSI Fortran. Given a path, the system symboli- This is essential reading for the instructor if domain
cally executes the path and creates a set of con- testing is to be discussed and also serves as a good
straints on the program's input variables. If the set source of thought questions for examinations. It is
of constraints is linear, linear programming tech- advanced reading for students.
niques are employed to obtain a solution. A solu-
tion to the set of constraints is test data that will
drive execution down the given path. If it can be Currit86
determined that the set of constraints is inconsis- Currit, P. A., Michael Dyer, and Harlan D. Mills.
tent, then the given path is shown to be non- "Certifying the Reliability of Software." IEEE
executable. To increase the chance of detecting Trans. Software Eng. SE-12, 1 (Jan. 1986), 3-11.
some of the more common programming errors, ar-
tificial constraints are temporarily created that sim- Abstract: The accepted approach to software de-
ulate error conditions and then an attempt is made velopment is to spec#fy and design a product in re-
to solve each augmented set of constraints. A sym- sponse to a requirements analysis and then to test
bolic representation of the program's output vari- the software selectively with cases perceived to be
ables in terms of the program's input variables is typical to those requirements. Frequently the result
also created. The symbolic representation is in a is a product which works well against inputs similar
human readable form that facilitates error detection to those tested but which is unreliable in unexpected
as well as being a possible aid in assertion gener- circumstances.
ation and automatic program documentation. In contrast it is possible to embed the software de-

velopment and testing process within a formal
Clarke82 statistical design. In such a design, software testing
Clarke, Lori A., Johnette Hassell, and Debra can be used to make statistical inferences about the
J. Richardson. "A Close Look at Domain Testing." reliability of the future operation of the software.
IEEE Trans. Software Eng. SE-8, 4 (July 1982), In turn, the process of systematically assessing
380-390. reliability permits a certification of the product at

delivery, that attests to a public record of defect
Abstract: White and Cohen have proposed the detection and repair and to a measured level of
domain testing method, which attempts to uncover operating reliability.
errors in a path domain by selecting test data on This paper describes a procedure for certifying the
and near the boundary of the path domain. The reliability of software before its release to users.
goal of domain testing is to demonstrate that the The ingredients of this procedure are a life cycle of
boundary is correct within an acceptable error executable product increments, representative
bound. Domain testing is intuitively appealing in statistical testing, and a standard estimate of the
that it provides a method for satisfying the often M7TF (mean time to failure) of the product at the
suggested guideline that boundary conditions time of its release.
should be tested.

The paper discusses the development of certifiedIn addition to proposing the domain testing method, software products and the derivation of a statistical
White and Cohen have developed a test data selec- model used for reliability projection. Available
tion strategy, which attempts to satisfy this method. software test data are used to demonstrate the ap-
Further, they have described two error measures plication of the model in the certification process.
for evaluating domain testing strategies. This
paper takes a close look at their strategy and their This paper provides a model of software reliability
proposed error measures. It is shown that in- based upon incremental software development.
ordinately large domain errors may remain un- Failure rates are determined from operational test-
detected by the White and Cohen strategy. Two ing of each incremental release. The focus is on

18 SEI-CM-9-1.2

Unit Testing and Analysis

eliminating faults that have the greatest impact on cases but also serves as a concise documentation of. operational performance. the test plan.

A strong background in statistics is necessary for In the paper, we describe the test case generator,
full appreciation of the mathematics. The paper is show how it works in typical examples, compare it
essential reading for the instructor, with related techniques, and discuss how it can be

used in conjunction with various testing heuristics.
DeMillo78a This is a practical paper on the means of generating
DeMillo, Richard A., Richard J. Lipton, and test data based on a BNF grammar. The use of
Frederick G. Sayward. "Hints on Test Data Selec- "attributes" here is unconventional and is not direct-
tion: Help for the Practicing Programmer." ly related to attribute grammars.
Computer 11, 4 (April 1978). Reprinted in This paper or [Bazzichi82] should be read by the
[Miller81al. instructor. It can be useful for in-depth study by the

This paper should win a prize for introducing more student.
sexy new terms than any other--mutation testing,
competent programmer hypothesis, coupling effect. Duran8O
Beware! It is easy to fall under the spell of the Duran, Joe W., and John J. Wiorkowski.
latter two terms and assume they are well-defined "Quantifying Software Validity by Sampling." IEEE
and justified. Beware also of the typographical er- Trans. on Reliability R-29, 2 (June 1980), 141-144.
ror that occurs in several places on page 37, where
'1' is substituted for 'I'. This substitution leads to Abstract: The point of all validation techniques is
the (wrong) impression that mutation testing is per- to raise assurance about the program under study,
formed conventionally on double mutants. The de- but no current methods can be realistically thought
scription on page 39 is confusing and seems to im- to give 100% assurance that a validated program
ply that 14 mutants are equivalent to the original, will perform correctly. There are currently no use-
yet four of them are not. [Duran8l] draws exactly ful ways for quantifying how 'well-validated' a pro-
the opposite conclusion based on the random gener- gram is. One measure of program correctness is
ation example! the proportion of elements in the program's input

domain for which it fails to execute correctly, since
Despite flaws, this paper is a marvelous introduc- the proportion is zero if f. the program is correct.
tion to mutation testing and is, therefore, essential This proportion can be estimated statistically from
reading for both instructor and student. the results of program tests and from prior subjec-

tive assessments of the program's correctness.
DeMIllo78b Three examples are presented of methods for deter-
DeMillo, Richard A., and Richard J. Lipton. "A mining s-conftence bounds on the failure propor-
Probabilistic Remark on Algebraic Program tion. It is shown that there are reasonable con-Pesbabilisticormaron A Programing Letters7ditions (for programs with a finite number of paths)
Testing." Infr tion Processing Letters 7, 4 (June for which ensuring the testing of all paths does not
1978), 193-195. give better assurance of program correctness.

Duncan8l The authors are interested in program testing, par-

Duncan, A. G., and J. S. Hutchinson. "Using Attri- ticularly in quantifying how well a program has

Grammars to Test Designs and been tested. Both random testing and path testingbuted Grm as t et Dsgs adare considered. A strong statistical background is
Implementations." 5th Intl. Conf. on Software Eng. presumed.

New York: IEEE, March 1981, 170-178.
Expert reading for the instructor.

Abstract: We present a method for generating test

cases that can be used throughout the entire life Duran8l
cycle of a program. This method uses attributed
translation grammars to generate both inputs and Duran, Joe W., and John J. Wiorkowski. "Capture-
outputs, which can then be used either as is, in or- Recapture Sampling for Estimating Software Error
der to test the specifications, or in conjunction with Content." IEEE Trans. Software Eng. SE-7, 1 (Jan.
automatic test drivers to test an implementation 1981), 147-148.
against the specifications. Abstract: Mills' capture-recapture sampling meth-
The grammar can generate test cases either ran- od allows the estimation of the number of errors in
domly or systematically. The attributes are used to a program by randomly inserting known errors and
guide the generation process, thereby avoiding the then testing the program for both inserted and in-
generation of many superfluous test cases. The digenous errors. This correspondence shows how
grammar itself not only drives the generation of test correct confidence limits and maximum likelihood

SEI-CM-9-1.2 19

Unit Testing and Analysis

estimates can be obtained from the test results. rithms can also be -used to detect the presence of
Both fixed sample size testing and sequential testing data flow anomalies which are symptomatic of pro-
are considered. gramming errors. Finally, some characteristics of

and experience with DAVE, a data flow analysis
It is essential that Mills' original article be read first system embodying some of these ideas, are de-
(see chapter 9 of [Mills83]). A strong statistics back- scribed.
ground is needed.

This article is a most readable and thorough intro-
This reading is for experts only. duction to data flow analysis. Read this first and

Duran84 compare with [achner84].

Duran, Joe W., and Simneon C. Ntafos. "An Evalu- This is essential reading for both instructor and stu-

ation of Random Testing." IEEE Trans. Software dent.

Eng. SE-JO, 4 (July 1984), 438-444. Foster8O

Abstract: Random testing of programs has usually Foster, Kenneth A. "Error Sensitive Test Cases
(but not always) been viewed as a worst case of Analysis (ESTCA)." IEEE Trans. Software Eng.
program testing. Testing strategies that take into SE-6, 3 (May 1980), 258-264.
account the program structure are generally
preferred. Path testing is an often proposed ideal Abstract: A hardware failure analysis technique
for structural testing. Path testing is treated here adapted to software yielded three rules for gener-
as an instance of partition testing, where by par- ating test cases sensitive to code errors. These
tition testing is meant any testing scheme which rules, and a procedure for generating these cases,
forces execution of at least one test case from each are given with examples. Areas for further study
subset of a partition of the input domain. Simula- are recommended.
tion results are presented which suggest that ran-
dom testing may often be more cost effective than A set of error-sensitive test case analysis rules are
partition testing schemes. Also, results of actual given for producing inputs that are "error-
random testing experiments are presented which sensitive." The rules are ad hoc, and no theoretical
confirm the viability of random testing as a useful justification is given for them. An error in the arti-
validation tool. cle is corrected in Software Engineering Notes 10, 1

(Jan. 1985), 62-67.
This paper challenges many ideas about program This article contains many classical examples and is
testing, especially the notion that random testing is useful for that reason. It is not essential reading, but
of no value. Experiments were conducted to vali- it raises many questions about why the proposed
date an error model, and the structural coverage ac- ideasises to worko
complished by such testing is reported. Knowledge ideas seems to work.
of statistics helps. •

This is essential reading for the instructor. It is Gannon8R Richardchaleningfo th stdet, ut t soud b red.Gannon, John, Paul R. McMullin, andRihr
challenging for the student, but it should be read. G. Hamlet. "Data-Abstraction, Implementation,

Fosdick76 Specification, and Testing." ACM Trans. Prog.

Fosdick, Lloyd D., and Leon J. Osterweil. "Data Lang. and Syst. 3, 3 (July 1981), 211-223.

Flow Analysis in Software Reliability." ACM Corn- Abstract: A compiler-based system DAISTS that
puting Surveys 8, 3 (Sept. 1976), 305-330. combines a data-abstraction language (derived

from the SIMULA class) with specification by al-
Abstract: The ways that the methods of data flow gebraic axioms is described. The compiler,
analysis can be applied to improve software presented with two independent syntactic objects in
reliability are described. There is also a review of the axioms and implementing code, compiles a
the basic terminology from graph theory and from "program" that consists of the former as test driver
data flow analysis in global program optimization. for the latter. Data points, in the form of expres-
The notation of regular expressions is used to de- sions using the abstract functions and constant
scribe actions on data for sets of paths. These ex- values, are fed to this program to determine if the
pressions provide the basis of a classification implementation and axioms agree. Along the way.
scheme for data flow which represents patterns of structural testing measures can be applied to both
data flow along paths within subprograms and code and axioms to evaluate the test data. Although
along paths which cross subprogram boundaries, a successful test does not conclusively demonstrate
Fast algorithms, originally introduced for global the consistency of axioms and code, in practice the
optimization, are described and it is shown how tests are seldom successful, revealing errors. The
they can be used to implement the classification advantage over conventional programming systems
scheme. It is then shown how these same algo- is threefold:

20 SEI-CM-9-1.2

Unit Testing and Analysis

(1) The presence of the axioms eliminates the need Abstract: Persistent software errors--those which
for a test oracle; only inputs need be supplied are not discovered until late in development, such

(2) Testing is automated: a user writes axioms, im- as when the software becomes operational-are by
plementation, and test points; the system writes the far the most expensive kind of error. Via analysis of

test drivers, software problem reports, it is discovered that the
predominant number of persistent errors in large-

(3) the results of tests are often surprising and help- scale software efforts are errors of omitted logic....
ful because it is difficult to get away with "trivial" that is, the code is not as complex as required by the
tests: what is not significant for the code is liable to problem to be solved. Peer design and code review,
be a severe test of the axioms, and vice versa, desk checking, and ultra-rigorous testing may be

The system described here covers many diverse a- the most helpful of the currently available technol-

pects of program testing. It is a specification- ogies in attacking this problem. New and better

dependent hybrid approach that takes advantage of methodologies are needed.

the orthogonality between implementations and al-
gebraic axioms. Goodenough75

This paper is recommended reading for the i - Goodenough, John B., and Susan L. Gerhart.

tor. With some background in algebraic specifi- "Toward a Theory of Test Data Selection." IEEE

cation, students can readily comprehend the system. Trans. Software Eng. SE-1, 2 (June 1975), 156-173.
Reprinted in [Miller8l a].

Gerhart76 Abstract: This paper examines the theoretical ard
Gerhart, Susan L., and Lawrence Yelowitz. practical role of testing in software development.
"Observations of Fallibility in Applicatiors of We prove a fundamental theorem showing that

Modem Programming Methodologies." IEEE Trans. properly structured tests are capable of demonstrat-

Software Eng. SE-2, 3 (Sept. 1976), 195-207. ing the absence of errors in a program. The
theorem's proof hinges on our definition of test

Abstract: Errors, inconsistencies, or confusing reliability and validity, but its practical utility
points are noted in a variety of published algo- hinges on being able to show when a test is actually
rithms, many of which are being used as examples reliable. We explain what makes tests unreliable. in formulating or teaching principles of such (for example, wc show by example why testing all
modern programming methodologies as formal program statements, predicates, or paths is not
specification, systematic construction, and correct- usually sufficient to insure test reliability), and we
ness proving. Common properties of these points of outline a possible approach to developing reliable
contention are abstracted. These properties are tests. We also show how the analysis required to
then used to pinpoint possible causes of the errors define reliable tests can help in checking a
and to formulate general guidelines which might program's design and specifications as well as in
help to avoid further errors. The common charac- preventing and detecting implementation errors.
teristic of mathematical rigor and reasoning in Despite the flaws indicated in [Weyuker8O], this
these examples is noted, leading to some discussion remains a classic.
about fallibility in mathematics, and its relationship
to fallibility in these programming methodologies. The paper is essential reading for the instructor.
The overriding goal is to cast a more realistic per- Students find it very difficult; do not use it as an
spective on the methodologies, particularly con- introduction to testing!
structive recommendations for their improvement.

This paper is a masterpiece of analysis of how er- Gourlay81
rors occur in the life cycle. Though a bit "nit- Gourlay, John S. Theory of Testing Computer
picky" in places, the paper succeeds in convincing Programs. Ph.D. Th., University of Michigan,
the most adamant skeptic of the need for dynamic 1981.
testing of computer programs. It is best understood
after some formal specifications and proofs of cor- Gourlay83
rectness are attempted. Gourlay, John S. "A Mathematical Framework for

This paper is essential reading for both instructor the Investigation of Testing." IEEE Trans. Software
and student. Eng. SE-9, 6 (Nov. 1983), 686-709.

Glass8l Abstract: Testing has long been in need of math-
ematical underpinnings to explain its value as well

Glass, Robert L. "Persistent Software Erros." IEEE as its limitations. This paper develops and applies
Trans. Software Eng. SE-7, 2 (March 1981), a mathematical framework that 1) unifies previous
162-168. work on the subject, 2) provides a mechanism for

SEI-CM-9-1.2 21

Unit Testing and Analysis

comparing the power of methods of testing pro- should be resistant to maintenance errors. If the
grams based on the degree to which the methods specifications are independent of program details
approximate program verification, and 3) provides they are easy to give, and unlikely to contain errors
a reasonable and useful interpretation of the notion in common with the program. Furthermore, certain
that successful tests increase one's confidence in finite specifications are maximal in that they ex-
the program's correctness. ercise the control and expression structure of a pro-
Applications of the framework include confirmation gram as well as any tests can.

of a number of common assumptions about prac- A testing system based on a compiler is described,
tical testing methods. Among the assumptions con- in which compiled code is utilized under interactive
firmed is the need for generating tests from specifi- control, but "semantic" errors are reported in the
cations as well as programs. On the other hand, a style of conventional syntax errors. The implemen-
careful formal analysis shows that the "competent tation is entirely in the high-level language on
programmer hypothesis" does not suffice to ensure which the system is based, using some novel ideas
the claimed high reliability of mutation testing. for improving documentation without sacrificing ef-
Hardware testing is shown tofit into the framework ficiency.
as well, and a brief consideration of it shows how
the practical differences between it and software This paper provides an excellent description of a
testing arise. system that anticipated many of the fault-based

methods of program testing practice and theory. It
This paper is expert reading. represents the first fault-based system using pro-

gram mutation in a context that determines test data
Hamlet77a adequacy by demonstrating that no simpler pro-
Hamlet, Richard G. 'Testing Programs with Finite grams can be substituted for the original and still
Sets of Data." Computer Journal 20, 3 (Aug. 1977), pass the test. The paper is easy to understand and232-237. motivates discussion of mutation testing and test

data adequacy.

Abstract: The techniques of compiler optimization This paper is recommended reading for the instruc-
can be applied to aid a programmer in writing a tor and provides an interesting comparison of
program which cannot be improved by these tech- tradeoffs among mutation methods for the student.
niques. A finite, representative set of test data can
be useful in this process. This paper presents the
theoretical basis for the (nonconstructive) existence Hamlet81
of test sets which serves as maximally effective Hamlet, Richard G. "Reliability Theory of Program
stand-ins for an unlimited number of input pos- Testing." Acta Informatica 16, 1 (1981), 31-43.
sibilities. It is argued that although the time re-
quired by a compiler to fully exercise a program on Hantler76
a set of data may be large, the corresponding im- Hantler, Sidney L. and James C. King. "An Intro-
provement in the reliability of the program may also duction to Proving the Correctness of Programs."
be large if the set meets the given theoretical re-quirements. A CM Computing Surveys 8, 3 (Sept. 1976) 331-353.

quireents.Reprinted in [Miller81la].

As a theoretical companion to [Hamlet77b], this

paper explores the notion of assessing test data ade- Abstract: This paper explains, in an introductory
quacy via program mutations. The article requires fashion, the method of specifying the correct be-
some background in computability, especially in re- havior of a program by the use of input/output
duction proofs involving the halting problcm. assertions and describes one method for showing

that the program is correct with respect to those
The paper could be used as an introduction to com- assertions. An initial assertion characterizes con-
putability for students with limited background, ditions expected to be true upon entry to the pro-
since all its theorems are relevant to issues involved gram and a final assertion characterizes conditions
in program testing. expected to be true upon exit from the program.

When a program contains no branches, a tec;mique
Hamlet77b known as symbolic execution can be used to show
Hamlet, Richard G. 'Testing Programs with the Aid that the truth of the initial assertion upon entry
of a Compiler." IEEE Trans. Software Eng. SE-3, 4 guarantees the truth of the final assertion upon exit.

(July 1977), 279-290. More generally, for a program with branches one
can ..eflne a symbolic execution tree. If there is an

Abstract: If finite input-output specifications are upper bound on the number of times each loop in
added to the syntax of programs, these specifica- such a program may be executed, a proof of cor-
tions can be verified at compile time. Programs rectness can be given by a simple traversal of the
which carry adequate tests with them in this way (finite) symbolic execution tree.

22 SEI-CM-9-1.2

Unit Testing and Analysis

However, for most programs, no fixed bound on the As a representative paper on software test beds, this. number of times each loop is executed exists and the paper deserves reading. Students will be able to
corresponding symbolic execution trees are infinite, understand it.
In order to prove the correctness of such programs,
a more general assertion structure must be pro- Howden75
vided. The symbolic execution tree of such pro- Howden, William E. "Methodology for the Gener-
grams must be traversed inductively rather than ex- aon ofPrgam T e ta."olEEE ranh. Con-
plicitly. This leads naturally to the use of addi- ation of Program Test Data." IEEE Trans. Com-
tional assertions which are called "inductive puters C-24, 5 (May 1975), 554-560.
assertions." Abstract: A methodology for generating program

This article provides an excellent introduction to test data is described. The methodology is a model
three important areas: program correctness, formal of the test data generation process and can be used
verification, and symbolic execution. It is highly to characterize the basic problems of test data gen-
readable and provides a gentle introduction to these eration. It is well defined and can be used to build
areas. an automatic test data generation system.

The instructor who needs to learn about the relation- The methodology decomposes a program into a
ship of symbolic execution to verification should finite set of classes of paths in such a way that an
begin here, but will need additional background as intuitively complete set of test cases would cause the
well. It is ideal for student reading. execution of one path in each class. The test data

generation problem is theoretically unsolvable:
there is no algorithm which, given any class of

Hayes-Roth83 paths, will either generate a test case that causes
Hayes-Roth, Frederick and Donald Arthur Water- some path in that class to be followed or determi.r-
man, eds. Building Expert Systems. Reading, that no such data exist. The methodology attempts
Mass.: Addison-Wesley, 1983. to generate test data for as many of the classes of

paths as possible. It operates by constructing
Hecht77 descriptions of the input data subsets which cause

the classes of paths to be followed. It transformsHecht, Matthew S. Flow Analysis of Computer these descriptions into systems of predicates which
Programs. New York: Elsevier North-Holland, it attempts to solve.
1977.

This paper contains a nuts-and-bolts presentation of
This book covers the theory of data flow analysis as symbolic execution techniques.
applied to program optimization. Application of
data flow analysis to verification is not covered. The instructor may find this paper useful, but it is

somewhat dated. Students who are not enthusiastic
about using structural coverage to generate test dataHennel183 should avoid this one.

Hennell, M. A., D. Hedley, and I. J. Riddlell. "The

LDRA Software Testbeds: Their Roles and Howden76
Capabilities." Proc. SOFTFAIR: A Conf. on Soft- Howden, William E. "Reliability of the Path Anal-
ware Development Tools, Techniques, and ysis Testing Strategy." IEEE Trans. Software Eng.
Alternatives. New York: IEEE, July 1983, 69-77. SE-2, 3 (Sept. 1976), 208-215. Reprinted in

Abstract: The LDRA software Tesibeds are de- [Miller8la].
scribed from two distinct viewpoints: those of the Abstract: A set of test data Tfor a program P is
individual users of the test beds, and of the manag-
ers whose role it is to enforce standards. The dis- reliable Pf it reveals that P contains an error when-
cussion looks at the information yielded and consid- ever P is incorrect. If a set of tests T is reliable anders how this can be used to increase the quality of P produces the correct output for each element of Timplemented software. then P is a correct program. Test data generadion

strategies are procedures for generating sets of test

The paper summarizes how the underlying research data. A testing strategy is reliable for a program P
work and the accumulated experience of ten years if it produces a reliable set of test data for P. It is
in-service use have been incorporated into the Test- proved that an effective testing strategy which is
beds. reliable for all programs cannot be constructed. A

Both the programmer's view and management's description of the path analysis testing strategy is
view of a test bed is presented. The system sup- presented. In the path analysis strategy data are
ports a variety of static and dynamic testing meth- generated which cause different paths in a program
ods for several languages. No references to other to be executed. A method for analyzing thetest beds are given . reliability of path testing is introduced. The method

SEI-CM-9-1.2 23

Unit Testing and Analysis

is used to characterize certain classes of programs This paper is recommended reading for the instruc-
and program errors for which the path analysis tor who wishes to compare the theoretical approach
strategy is reliable. Examples of published incor- with the empirical approach. It is readily under-
rect programs are included, stood by students.

This is an excellent paper that established much of
the terminology and influenced much of the work in Howden78b
path testing. Howden, William E. "DISSECT-A Symbolic Eval-

It is essential reading for both the instructor and uation and Program Testing System." IEEE Trans.

student. Software Eng. SE-4, 1 (Jan. 1978), 70-73.

Abstract: The basic features of the DISSECT Sym-
Howden77 bolic testing tool are described. Usage procedures
Howden, William E. "Symbolic Testing and the are outlined and the special advantages of the tool

DISSECT Symbolic Evaluation System." IEEE are summarized. Cost estimates for using the tool

Trans. Software Eng. SE-3, 4 (July 1977), 266-278. are provided and the results of experiments to de-

Reprinted in (Mifler8l a]. termine its effectiveness are included. The back-
ground and history of the development of the tool

Abstract: Symbolic testing and a symbolic evalu- are outlined. The availability of the tool is de-
ation system called DISSECT are described. The scribed and a listing of reference materials is in-
principle features of DISSECT are outlined. The cluded.
results of two classes of experiments in the use of
symbolic evaluation are summarized. Several Howden78c
classes of program errors are defined and the Howden, William E. "Algebraic Program Testing."
reliability of symbolic testing in finding bugs is re- Acta Informatica 10, 1 (1978), 53-66.
lated to the classes of errors. The relationship of
symbolic evaluation systems like DISSECT to Abstract: An approach to the study of program
classes of program errors and to other kinds of pro- testing is introduced in which program testing is
gram testing and program analysis tools is also dis- treated as a special kind of equivalence problem. In
cussed. Desirable improvements in DISSECT, this approach, classes of programs P* and associ-
whose importance was revealed by the experiments, ated classes of test sets T* are defined which have
are mentioned. the property that if two programs P and Q in P*

This paper provides a detailed look into the agree on a set of tests from T*, then P and Q are

strengths and weaknesses of a symbolic execution computationally equivalent. The properties of a
sstem.h Seal wenesesing oti a re no uce n class P* and the associated class T* can be thought
system. Several interesting notions are introduced, of as defining a set of assumptions about a
such as using two-dimensional output to improve hypothetical correct version Q of a program P in
readability of symbolic output, and the use of a path P*. If the assumptions are valid then it is possible
description language, to prove the correctness of P by testing. The main

The paper is necessary only for in-depth under- result of the paper is an equivalence theorem for
standing of symbolic execution. It is easily under- classes of programs which carry out sequences of
stood by students. computations involving the elements of arrays.

This reading is for expert knowledge.Howden78a
Howden, William E. "Theoretical and Empirical Howden80a
Studies of Program Testing." IEEE Trans. Software Howden, William E. "Functional Testing and De-
Eng. SE4, 4 (July 1978), 293-298. sign Abstractions." J. Syst. and Software 1, 4 (April

Abstract: Two approaches to the study of program 1980), 307-313. Reprinted in [Miller8la].
testing are described. One approach is theoretical
and the other empirical. In the theoretical ap- Howden80b
proach situations are characterized in which it is Howden, William E. "Applicability of Software Val-
possible to use testing to formally prove the correct- idation Techniques to Scientific Programs." ACM
ness of programs or the correctness of properties of Trans. Prog. Lang. and Syst. 2, 3 (July 1980),
programs. In the empirical approach testing strate- 307-320. Reprted in [Miller8l a].
gies reveal the errors in a collection of programs.
A summary of the results of two research projects Abstract: Error analysis involves the examination
which investigated these approaches are presented. of a collection of programs whose errors are
The differences between the two approaches are known. Each error is analyzed and validation tech-
discussed and their relative advantages and dis- niques which would discover the error are identi-
advantages are compared.

24 SEI-CM-9-1.2

Unit Testing and Analysis

fled. The errors that were present in version five of tests. The method is systematic, and a tool can be
a package of Fortran scientific subroutines and built to help the user apply the method. It is exten-
then later corrected in version six were analyzed. sible in the sense that it can be extended to cover
An integrated collection of static and dynamic anal- additional classes of errors. Its relationship to
ysis methods would have discovered the error in other software testing methods is discussed. Ex-
version five before its release. An integrated ap- amples are included.
proach to validation and the effectiveness of indi- Different approaches to testing involve different
vidual methods are discussed. concepts of the adequacy or completeness of a set

An excellent description of what errors are dis- of tests. A formalism for characterizing the com-
covered by what techniques, pleteness of test sets that are generated by error-

based methods such as weak mutation testing as
This paper is essential reading for the instructor and well as the test sets generated by other testing meth-
student alike. ods is introduced. Error-based, functional, and

structural testing emphasize different approaches to
Howden8Oc the test data generation problem. The formalism
Howden, William E. "Functional Program Testing." which is introduced in the paper can be used to
IEEE Trans. Software Eng. SE-6, 2 (March 1980), describe their common basis and their differences.
162-169. As a variant of mutation testing, weak mutation

Abstract: An approach to functional testing is de- testing is a viable option and bears close resem-
scribed in which the design of a program is viewed blance to the system described in [Hamlet77a]. This
as an integrated collection of functions. The selec- paper formalizes the notion of completeness of a
tion of test data depends on the functions used in the test set based on its ability to detect local changes to
design and on the value spaces over which thefunc- the code. A good comparison of testing methods is
tions are defined. The basic ideas on the method made, using the notation introduced in the paper.
were developed during the study of a collection of The paper is more easily understood if [DeMillo78],
scientific programs containing errors. The method [White80], and [Foster80] are read first.
was the most reliable testing technique for discover- This paper is recommended for the instructor, espe-
ing the errors. It was found to be significantly more cially if error-based or fault-based testing is to be
reliable than structural testing. The two techniques covered in depth. Given sufficient background, stu-
are compared and their relative advantages and dents should find the paper accessible. It could
limitations are discussed. form the basis of a class project to develop a weak

By functional program testing, Howden means test- mutation system.
ing those aspects of a program that have any form
of external specification, including design docu- Howden86
ments or even comments within the code. The use Howden, William E. "A Functional Approach to
of the term functional testing in this module is de- Program Testing and Analysis." IEEE Trans. Soft-
rived from this and similar papers. ware Eng. SE-12, 10 (Oct. 1986), 997-1005.
[Howden80c] is essential reading for both the in- Abstract: An integrated approach to testing is de-
structor and the student. scribed which includes both static and dynamic

analysis methods and which is based on theoretical
Howden82 results that prove both its effectiveness and efficien-
Howden, William E. "Weak Mutation Testing and cy. Programs are viewed as consisting of collec-
Completeness of Test Sets." IEEE Trans. Software tions of functions that are joined together using
Eng. SE-8, 4 (July 1982), 371-379. Reprinted in elementary functional forms or complex functional
[Miller81 a]. structures.

Functional testing is identified as the input-outputAbstract: Different approaches to the generation of analysis of functional forms. Classes of faults are

test data are described. Error-based approaches demised or these f orms and results presented which
depend on the definition of classes of commonly oc- d

curring program errors. They generate tests which prove the fault revealing effectiveness of well de-
are specifically designed to determine if particular fined sets of tests.
classes of errors occur in a program. An error- Functional analysis is identified as the analysis of
based method called weak mutation testing is de- the sequences of operators, functions, and data type
scribed. In this method, tests are constructed which transformations which occur in functional struc-
are guaranteed to force program statements which tures. Functional trace analysis involves the ex-
contain certain classes of errors to act incorrectly amination of the sequences of function calls which
during the execution of the program over those occur in a program path; operator sequence anal-

SEI-CM-9-1.2 25

Unit Testing and Analysis

ysis the examination of the sequences of operators Abstract: One of the practical methods commonly
on variables, data structures, and devices; and data used to detect the presence of errors in a computer
type transformation analysis the examination of the program is to test it for a set of test cases. The
sequences of transformations on data types. Theo- probability of discovering errors through testing
retical results are presented which prove that it is can be increased by selecting test cases in such a
only necessary to look at interfaces between pairs of way that each and every branch in the flowchart
operators and data type transformations in order to will be traversed at least once during the test. This
detect the presence of operator or data type se- tutorial describes the problems involved and the
quencing errors. The results depend on the defini- methods that can be used to satisfy the test require-
tion of normal forms for operator and data ,ype ment.
sequencing diagrams. This paper discusses a method for determining path
This paper represents the culmination of Howden's conditions to enable branch coverage.
ideas on program testing as a full-blown theory.
The article summarizes his book, [Howden87], and The paper is very easy to understand and should
should be consulted before selecting the book for a cause no problems for students. It will introducecoure. y anintresing wis oftermnolgythem to predicate calculus notation for expressing
cowse. By an interesting twist of terminology, path conditions. It is recommended reading for
Howden has managed to incorporate all of struc- both instructor and students.
tural testing into functional testing. He presumes
the availability of external functions that specify the
behavior of components of the program, even those IEEE83a
as small as an expression. Thus, conventional struc- IEEE. IEEE Standard Glossary of Software Engi-
tural issues such as branch testing are converted into neering Terminology. New York: IEEE, 1983.
questions like "Does this condition compute this ANSIIEEE Std 729-1983.
(externally defined) function?" Of course, the exis-
tence of these external functions for every line of IEEE83b
code can be questioned, but Howden has a quick IEEE. IEEE Standard for Software Test Docu-
reply-you can use the code to generate the func-
tion! While such sleight-of-hand may be disturbing mentation. New York: IEEE, 1983. ANSI/IEEE
at first, it is clear that in some cases this is not Std 829-1983.
inappropriate, as when a section of code fits a stan-
dard paradigm and has a comment that says "sort IEEE87
list." To understand fully his development, it is nec- IEEE. IEEE Standard for Software Unit Testing.
essary to see Howden's progress through several New York: IEEE, 1987. ANSI/IEEE Std 1008-
papers, especially (Howden76], [Howden8Oc], and 1987.
[Howden82].

This paper is essential reading for the instructor. Jachner84
The presentation is at such a high level that it will Jachner, Jacek, and Vinod K. Agarwal. "Data Flow
be difficult for an uninitiated student to understand, Anomaly Detection." IEEE Trans. Software Eng.
even though it is very well written. SE-IO, 4 (July 1984), 432-437.

Howden87 Abstract: The occurrence of a data flow anomaly is
Howden, William E. Functional Program Testing often an indication of the existence of a program-
and Analysis. New York: McGraw-Hill, 1987. ming error. The detection of such anomalies can be

used for detecting errors and to upgrade software
Table of Contents quality. This paper introduces a new, efficient algo-

1. Introduction rithm capable of detecting anomalous data flow
2. Functions patterns in a program represented by a graph. The
3. States and Types algorithm based on static analysis scans the paths
4. Theoretical Foundations entering and leaving each node of the graph to
5. Functional Program Testing reveal anomalous data action combinations. An al-
6. Functional Analysis gorithm implementing this type of approach was
7. Management and Planning proposed by Fosdick and Osterweil [2]. Our ap-

proach presents a general framework which not

Huang75 only fills a gap in the previous algorithm, but also

Huang, J. C. "An Approach to Program Testing." provides time and space improvements.

ACM Computing Surveys 8, 3 (Sept. 1975), 113-128. This paper corrects a problem in [Fosdick76] and
Reprinted in [Miller8la]. cannot be understood without having read its

predecessor.

26 SEI-CM-9-1.2

Unit Testing and Analysis

If [Fosdick76] is covered, this paper must be read by can be used to guide program testing. The
the instructor. The paper opens up the possibility of presented approach aims to exercise use-definition
a meta-discussion about the need to analyze papers chains that appear in a program. Two such data
critically. The shock effect on students of the oriented testing strategies are proposed; the first
reliability of published papers is not to be underes- involves checking liveness of every definition of a
timated. See [Weyuker80] for additional support for variable at the point(s) of its possible use; the sec-
this approach. ond deals with liveness of vectors of variables

treated as arguments to an instruction or program

Jalote83 block. Reliability of these strategies is discussed

Jalote, Pankaj. "Specification and Testing of Ab- with respect to a program containing an error.

stract Data Types." Proceedings of COMPSAC 83. This paper provides a transition from the use of data
Silver Spring, Md.: IEEE Computer Society Press, flow to detect anomalies in programs to its use as a
Nov. 1983, 508-511. method for test data selection and evaluation.

Abstract: Software testing assumes the eistence of The paper should be read by the instructor and is
a test oracle who is frequently human. The test sys- accessible to students. The difference between
tem described obviates the need for a conventional using a criterion as an evaluation method rather than
oracle by automatically generating a test oracle for as a generation method needs to be emphasized.
an Abstract Data Type from its specifications. In
certain circumstances the test system may also de- Leveson87
tect Abstract Data Types that are not completely Leveson, Nancy. Software Safety. Curriculum Mod-
specified and help diagnose missing axioms. A test ule SEI-CM-6-1.0, Software Engineering Institute,
point generator is provided which, when used to- Carnegie Mellon University, Pittsburgh, Pa., 1987.
gether with this oracle, facilitates the testing of Ab-
stract Data Types. McCabe83
This article describes a method for testing abstract Structured Testing. McCabe, Thomas J., ed. Silver
data types specified by algebraic axioms, in which Spring, Md.: IEEE Computer Society Press, 1983.
test data are generated automatically.

* The paper provides a detailed example of testing Miller74
based on the specification technique. It is not es- Miller, Edward, Michael R. Paige, Jeoffrey
sential reading. P. Benson, and William R. Wisehart. "Structural

Techniques of Program Validation." Digest of
Kemmerer85 Papers, COMPCON Spring 74. Northridge, Calif.:
Kemmerer, Richard A. "Testing Formal Specifica- IREE Computer Society, 1974, 161-164. Reprinted
tions to Detect Design Errors." IEEE Trans. Soft- in [Miller8l a].
ware Eng. SE-i 1, 1 (Jan. 1985), 32-43. Abstract: A structural basis for the formulation of

Abstract: Formal specification and verification test cases for given computer programs has been
techniques are now used to increase the reliability found to be an effective and efficient strategy. An
of software systems. However, these approaches existing automated program validation system
sometimes result in specifying systems that cannot employs these techniques with good success in min-
be realized or that are not usable. This paper dem- imizing the number of test cases required; this same
onstrates why it is necessary to test specifications system permits automatic identification of test cases
early in the software life cycle to guarantee a sys- in a high proportion of instances. Research aimed
tem that meets its critical requirements and that at fully automating the test case generation process
also provides the desired functionality. Definitions continues.
to provide the frameworkfor classifying the validity
of a functional requirement with respect to aformal Level-i path testing is defined and illustrated. The
specification are also introduced. Finally, the de- presentation is terse and difficult to follow, but it
sign of two tools for testing formal specifications is illustrates the analysis performed by one of the ear-
discussed. lier testbeds, RXVP.

This is in-depth reading on path testing for the in-
LaskI83 structor. Student readers will struggle as much with
Laski, Janusz W., and Bogdan Korel. "A Data Flow presentation as with content.

*Oriented Program Testing Strategy." IEEE Trans.
Software Eng. SE-9, 3 (May 1983), 347-354. Miller8la

Abstract: Some properties of a program data flow Tutorial: Software Testing & Validation Techniques.
Miller, Edward and William E. Howden, eds. New
York: IEEE Computer Society Press, 1981.SEI-CM-9-1 .2 27

Unit Testing and Analysis

Miller8i b Muchnlck81
Miller, Edward. "A Software Test Bed: Philosophy, Muchnick, Steven S., and Neil D. Jones, eds.
Implementation and Application." Computer Pro- Program Flow Analysis: Theory and Applications. 0
gram Testing: Proc. of the Summer School on Corn- Englewood Cliffs, N. J.: Prentice-Hall, 1981.
puter Program Testing Held at SOGESTA, Urbino, This book delves deeply into the subject of data
Italy, June 29-July 3, 1981. New York: Elsevier flow analysis and many areas of application to test-
North-Holland, 1981, 231-240. ing, including static analysis tools and symbolic ex-

Abstract: This paper outlines some general con- ecution.
siderations leading to the development of an inte- This book is for experts.
grated automated test system for computer soft-
ware. An example of the finished system, calledIB, is given. Myers79

Myers, Glenford J. The Art of Software Testing.

Mills83 New York: John Wiley, 1979.

Mills, Harlan D. Software Productivity. Boston: Table of Contents
Little, Brown, 1983. 1. A Self-Assessment Test

2. Program Inspections, Walkthroughs, and
Morel183 Reviews
Morell, Larry J. A Theory of Error-Based Testing. 3. Test-Case Design
Ph.D. Th., University of Maryland, College Park, 4. Module TestingMd., 1983. 5. Higher-Order Testing

6. Debugging

This is available from the author. (See address at 7. Test Tools and Other Techniques
the front of this module.) This book is an often cited reference on software

testing. Although it is somewhat dated, students
Morel187 find it helpful and easy to read.
Morell, Larry J. "A Model for Assessing Code-based
Testing Techniques." 5th Annual Pacific Northwest NBS82
Software Quality Conf. Portland, Oreg.: Lawrence Powell, Patricia B., ed. Software Validation, Verifi-
& Craig, Oct. 1987, 309-325. To appear in IEEE cation, and Testing Technique and Tool Reference
Trans. Software Eng. Guide. Washington, D. C.: National Bureau of

Abstract: A theory of fault-based program testing Standards, 1982.
is defined and explained. Testing is fault-based This book covers most of the testing and analysis
when it seeks to demonstrate that prescribed faults techniques covered in this module. The techniques
are not in a program. It is assumed here that a are compared according to their effectiveness, ap-
program can only be incorrect in a limited fashion plicability, ease of learning, and costs. The assess-
specified by associating alternate expressions with ments are accurate and succinct.
program expressions. Classes of alternate expres-
sions can be infinite. Substitution of an alternate This is recommended reading for the instructor,
expression for a program expression yields an al- since it contains many useful classroom examples.
ternate program that is potentially correct. The
goal of fault-based testing is to produce a test set Ntafos84
that differentiates the program from each of its al- Ntafos, Simeon C. "On Required Element Testing."
ternates. IEEE Trans. Software Eng. SE-10, 6 (Nov. 1984),
A particular form of fault-based testing based on 795-803.
symbolic execution is presented. In symbolic
testing program expressions are replaced by sym- Abstract: In this paper we introduce two classes of
bolic alternatives that represent classses of alter- program testing strategies that consist of specifying
nate expressions. The output from the system is an a set of required elements for the program and then
expression in terms of the input of the symbolic al- covering those elements with appropriate test in-
ternative. Equating this with the output from the puts. In general, a required element has a struc-
original program yields a propagation equation tural and a functional component and is covered by
whose solutions determine those alternatives which a test case if the test case causes the features speci-
are not differentiated by this test. fied in the structural component to be executed un-

der the conditions specified in the functional com-ponent. Data flow analysis is used to specify the

28 SEI-CM-9-1.2

Unit Testing and Analysis

structural component and data flow interactions are classify the 173 faults that resulted from the
used as a basis for developing the functional corn- project's errors. For each error, we asked the pro-
ponent. The strategies are illustrated with examples grammers to select its most likely cause, report the
and .some experimental evaluations of their effec- stages of the software development cycle in which
tiveness are presented. the error was committed and the problem first

noticed, and the circumstances of the problem's de-
A general framework is established for integrating tection and isolation, including time required, tech-
structural testing with data flow information. Read- niques tried, and successful techniques. The results
ing [Rapps85] first is suggested, which is more collected in this study are compared to results from
comprehensive in treatment of approaches. earlier studies, and similarities and differences are

The paper could be useful to the instructor, but it is noted.
less accessible to the student.

Panz178
Osterwell76 Panzl, David J. "Automatic Software Test Drivers."
Osterweil, Leon J., and Lloyd D. Fosdick. Computer 11, 4 (April 1978), 44-50.
"DAVE-A Validation Error Detection and Docu- This paper is a clear presentation of a method for
mentation System for Fortran Programs." automating unit tests. It is entirely pragmatic.
Software-Practice and Experience 6, 4 (Oct.-Dec.1976), 473-486. Reprinted in [Miller81 al. [Panz178] provides many insights into unit testing in

an industrial environment and should be read by the

Abstract: This paper describes DAVE, a system for instructor. The paper opens up an area of practice
analyzing Fortran programs. DAVE is capable of to which most students have had little exposure. It
detecting the symptoms of a wide variety of errors also provides a good starting point for potential
in programs, as well as assuring the absence of projects.
these errors. In addition, DAVE exposes and docu-
ments subtle data relations and flows within pro- Panz181
grams. The central analytic procedure used is a Panzl, D. J. "Experience with Automatic Program
depth first search. DAVE itself is written in
Fortran. Its implementation at the University of Testing." Proc. Trends and Applications 1981: Ad-
Colorado and some early experience is described. vances in Software Technology. New York: IEEE,

After an abrupt introduction to data flow anomalies, May 1981, 25-28.

the paper gives two algorithms for computing the Abstract: A novel method for automating software
input/output classification of a variable. The rela- testing has been demonstrated at the General
tionship between these algorithms and the detection Electric Corporate Research and Development
of data flow anomalies is not immediately obvious. Center. This method, called the Dual programming
(Fosdick76] should be read first and correlated with method, is based on a new type of automatic soft-
this article. The algorithms are couched in an ware test driver that automates the generation of
Algol-like language, making them more palatable to test case inputs and the checking of test results and
students. thereby allows the execution of tens of thousands of

test cases at zero labc., -ost. Prototype versions of
The paper could serve as detailed reading for the the Dual automatic test driver were implemented on
instructor. The density of notation makes it difficult the CRD H6000 computer in 1980. A controlled
for the student. experiment has shown that the Dual programming

method is capable of improving software reliability
Ostrand84 in individual program modules by one to two orders
Ostrand, Thomas, and Elaine J. Weyuker. of magnitude.
"Collecting and Categorizing Software Error Data in
an Industrial Environment." J. Syst. and Software 4, Perlman88
11 (Nov. 1984), 289-300. Perlman, Gary. User Interface Development. Cur-

riculum Module SEI-CM-17-1.0, Software Engi-Abstract: A study has been made of the software neering Institute, Carnegie Mellon University, Pitts-
errors committed during development of an inter- nerin Pa. , 1988.

active special-purpose editor system. This product, burgh, Pa., 1988.

developed for commercial production use, has been
followed during nine months of coding, unit testing, Probert82
function testing, and system testing. Detected prob- Probert, Robert L. "Optimal Insertion of Software
lems and their fixes have been described by testers Probes in Well-Delimited Programs." IEEE Trans.
and debuggers. A new fault categorization scheme Software Eng. SE-8, 1 (Jan. 1982), 34-42.
was developed from these descriptions and used to

SEI-CM-9-1.2 29

Unit Testing and Analysis

Abstract: A standard technique for monitoring soft- hardwarelsoftware system which ultimately could
ware testing activities is to instrument the module include large complex distributed processing sys-
under test with counters or probes before testing tems.
begins; then, during testing, data generated by
these probes can be used to identify portions of as An excellent survey of reliability, with a compre-
yet unexercised code. In this paper the effect of the hensive bibliography containing 114 references.
disciplined use of language features for explicitly Readers need to have a strong statistics background.
delimiting control flow constructs is investigated
with respect to the corresponding ease of software Rapps85
instrumentation. In particular, assuming all control Rapps, Sandra, and Elaine J. Weyuker. "Selecting
constructs are explicitly delimited, for example, by Software Test Data Using Data Flow Information."
END IF or equivalent statements, an easily pro- IEEE Trans. Software Eng. SE-11, 4 (April 1985),
grammed method is given for inserting a minimum 367-375.
number of probes for monitoring statement and
branch execution counts without disrupting source Abstract: This paper defines a family of program
code structure or paragraphing. The use of these test data selection criteria derived from data flow
probes, called statement probes, is contrasted with analysis techniques similar to those used in com-
the use of standard (branch) probes for execution piler optimization. It is argued that currently used
monitoring. It is observed that the results apply to path selection criteria, which examine only the con-
well-delimited modules written in a wide variety of trol flow of a program, are inadequate. Our proce-
programming languages, in particular, Ada. dure associates with each point in a program at

which a variable is defined, those points at whichProgram instrumentation techniques are surveyed, the value is used. Several test data selection crite-
and a specific method is described The paper - ria, differing in the type and number of these associ-self-contained, and the method described is ap- ations, are defined and compared.

plicable to most modern languages. A background
in graph theory and formal grammars is necessary. This paper explores the hierarchical relationships

The paper should be read by the instructor if in- among several data flow testing techniques. The
strumentation is discussed. The paper is explicit emphasis is on specifying criteria that should be sat-

enough to form the basis of a class project. isfied by test data, not on generating the data.

The paper should be read by the instructor if data
Ramamoorthy82 flow is to be treated in depth. The paper is likely to
Ramamoorthy, C. V., and Farokh B. Bastani. overwhelm students.
"Software Reliability-Status and Perspectives."
IEEE Trans. Software Eng. SE-8, 4 (July 1982), Redwlne83
354-371. Redwine, Samuel T., Jr. "An Engineering Approach

to Software Test Data Design." IEEE Trans. Soft-Abstract: Itris essential to assess the reliability of ware Eng. SE-9, 2 (March 1983), 191-200.

digital computer systems used for critical real-time

control applications (e.g., nuclear power plant Abstract: A systematic approach to test data design
safety control systems). This involves the assess- is presented based on both practical translation of
ment of the design correctness of the combined theory and organization of professional lore. The
hardware/software system as well as the reliability approach is organized around five domains and
of the hardware. In this paper we survey methods achieving coverage (exercise) of them by the test
of determining the design correctness of systems as data. The domains are processing functions, input,
applied to computer programs. output, interaction among functions, and the code
Automated program proving techniques are still not itself. Checklists are used to generate data for
Atmated pregasti proigams. Mniualpos are tprocessing functions. Separate checklists have beenpracti cal for realistic programs. Manual proofs are constructed for eight common business data proc-

lengthy, tedious, and error-prone. Software
reliability provides a measure of confidence in the essing functions such as editing, updating, sorting,

operational correctness of the software. Since the and reporting. Checklists or specific concrete
eryn1970's several software reliability models directions also exist for input, output, interaction,early 190ssvrlsfwr eiblt oesand code coverage. Two global heuristics concern-

have been proposed. We classify and discuss these
models using the concepts of residual error size ad ing all test data are also used. A limited discussion
the testing process used. We also discuss methods on documenting test input data, expected results,
of estimating the correctness of the program and the and actual results is included.

adequacy of the set of test cases used. Use, applicability, and possible expansions are

These methods are directly applicable to assessing covered briefly. Introduction of the method has

the design correctness of the total integrated similar difficulties to those experienced when intro-

30 SEI-CM-9-1.2

Unit Testing and Analysis

ducing any disciplined technique into an area both code and specification is attempted. Prereq-
where discipline was previously lacking. The ap- uisite reading includes domain testing [White80] and
proach is felt to be easily modifiable and usable for symbolic execution and formal verification
types of systems other than the traditional business [Hantler76].
data processing ones for which it was originally This paper is essential reading for both instructor
developed. and student.

This is one of the best articles directed toward a
systematic means of testing data processing soft- Roussopoulos85
ware. The value of this paper lies in its pragmatic Roussopoulos, Nicolas, and Raymond T. Yeh.
approach to test data selection; there is little theory "SEES-A Software Testing Environment Support
presented here. System." IEEE Trans. Software Eng. SE-11, 4 (April
As an example of applied testing in business ap- 1985), 355-366.
plications, this paper is a winner. It could serve as a
self-assessment test for students who have to devel- Abstract: SEES is a database system to support
op an integrated method. program testing. The program database is auto-

matically created during the compilation of the pro-

Rlchardson85 gram by a compiler built using the YACC compiler-

Richardson, Debra J., and Lori A. Clarke. "Partition compiler.

Analysis: A Method Combining Testing and The database contains static information about the
Verification." IEEE Trans. Software Eng. SE-11, 12 compiled program and is accessed via a relational

database management system. SEES allows very(Dec. 1985), 1477-1490. flexible access to the data by selecting the level of

Abstract: The partition analysis method compares detail and very powerful tools for writing reports
a procedure's implementation to its specification, tailored to the user needs.
both to verify consistency between the two and to This paper rediscovers the idea that the static anal-
derive test data. Unlike most verification methods, ysis of programs is facilitated by building a rela-
partition analysis is applicable to a number of dif- tional database from information defined during
ferent types of specification languages, including compilation. Tool building is then done in the lan-
both procedural and nonprocedural languages. It com pli o b d is t de ha

W is thus applicable to high-level descriptions as well guage supplied by the DBMS.
as to low-level designs. Partition analysis also im- The paper could prove useful to the instructor as
proves upon existing testing criteria. These criteria alternative technology that can be used for static
usually consider only the implementation, but par- analysis of programs.
tition analysis selects test data that exercise both a
procedure's intended behavior (as described in the Rowland8l
specifications) and the structure of its implemen- Rowland, John H., and Philip J. Davis. "On the Use
tation. To accomplish these goals, partition anal-
ysis divides or partitions a procedure's domain into of Transcendentals for Program Testing." J. ACM
subdomains in which all elements of each sub- 28, 1 (Jan. 1981), 181-190.
domain are treated uniformly by the specification Abstract: The element z is called a transcendental
and processed uniformly by the implementation. for the class F if functions in F can be uniquely
This partition divides the procedure domain into identified by their values at z. Conditions for the
more manageable units. Information related to existence of transcendentals are discussed for cer-
each subdomain is used to guide in the selection of tain classes of polynomials, multinomials, and ra-
test data and to verify consistency between the spec- tional functions. Of particular interest are those
ification and the implementation. Moreover, the transcendentals having an exact representation in
testing and verification processes are designed to computer arithmetic. Algorithms are presentedfor
enhance each other. Initial experimentation has reconstruction of the coefficients of a polynomial
shown that through the integration of testing and from its value at a transcendental. The theory is
verification, as well as through the use of infor- illustrated by application to polynomials, quadratic
mation derived from both the implementation and forms, and quadrature formulas.
the specification, the partition analysis method is
effective for evaluating program reliability. This This paper presents many techniques for demon-
paper describes the partition analysis method and strating that a particular function has been imple-
reports the results obtained from an evaluation of mented in a computer program. The paper requires
its effectiveness. a good background in functional analysis to grasp/ all the details. The paper is very well written,
This paper contains an excellent presentation of a

hybrid approach, in which simultaneous coverage of though it has limited application.

SEI-CM-9-1.2 31

Unit Testing and Analysis

The paper can prove useful to the instructor, espe- complexity of several classes of programs, where
cially in gaining understanding of issues involved in the testing complexity is measured in terms of the
selecting test data for particular program paths. It is number of test data required for demonstrating pro-
not recommended for students. gram correctness by testing. It is shown that even

for very restrictive classes of programs, none of the

Senn83 commonly used test criteria, namely, having every
Senn, Edmond H., Kathy R. Ames, and Kathryn statement, branch, and path executed at least once,Senn EdnondH.,Kath R.Ames an Katr'nis nearly sufficient to guarantee absence of errors.
A. Smith. "Integrated Verification and Testing Sys-

tem (IVTS) for HAL/S Programs." Proc. Based on the study of testing complexity, this paper
SOFTFAIR: A Conf. on Software Development proposes two new test criteria, one for testing a

Tools, Techniques, and Alternatives. New York: path and the other for testing a program. These

IEEE, July 1983, 23-31. new criteria suggest how to select test data to ob-
tain confidence in program correctness beyond the

Abstract: The IVTS is a large software system de- requirement of having each statement, branch, or
signed to support user-controlled verification anal- path tested at least once.
ysis and testing activities for programs written in This paper analyzes the complexity of achieving
the HAL/S language. The system is composed of a several structural coverage measures. The inade-
user interface and user command language, anal- quacy of these measures is again shown, along with
ysis tools and an organized data base of host system new criteria for demonstrating correctness for a
files. The analysis tools are offour major types: (1) limited class of programs.
static analysis, (2) symbolic execution, (3) dynamic
analysis (testing), and (4) documentation enhance- The paper should be read by the instructor to gain
ment. an appreciation of when testing is equivalent to cor-
The IVTS requires a split HAL/S compiler, divided rectness. It is in-depth reading for a student inter-
at the natural separation point between the ested in structural testing.
parserlexical analyzer phase and the target ma-
chine code generator phase. The JYTS uses the Welser84
internal program form (HALMAT) between these Weiser, Mark. "Program Slicing." IEEE Trans. Soft-
two phases as primary input for the analysis tools. ware Eng. SE-JO, 4 (July 1984), 352-357.
The dynamic analysis component requires some
way to "execute" the object HAL/S program. The Abstract: Program slicing is a method for automat-
execution medium may be an interpretive simulation ically decomposing programs by analyzing their
or an actual host or target machine, data flow and control flow. Starting from a subset

of a program's behavior, slicing reduces that pro-
IVTS represents state-of-the-art in testing integra- gram to a minimal form which still produces that
tion. The paper is brief but presents an overview of behavior. The reduced program, called a "slice,"
the functionality of the system. is an independent program guaranteed to represent

IVTS can serve as a useful example of integrated faithfully the original program within the domain of
testing, but not enough material is available here for the specified subset of behavior.
a full lecture. Some properties of slices are presented. In partic-

ular, finding statement-minimal slices is in general
Shnelderman79 unsolvable, but using data flow analysis is sufficient
Shneiderman, Ben. Software Psychology: Human to find approximate slices. Potential applications
Factors in Computer and Information Systems. include automatic slicing tools for debugging andFacor inCoputr nd IforainSse . parallel processing of slices.
Cambridge, Mass.: Winthrop Publishers, 1979.

Though not directly related to program testing, thisThis book describes empirical analysis performed paper illustrates an application of data flow analysis

on the programming process. It is useful for under- with a strong intuitive appeal. Connections to sym-

standing how to conduct experiments into human bolic execution and mutation testing can be readily

factors issues associated with programming lan- made.

guages and interfaces.
The paper could prove useful to the instructor and

TaI8O the studenL

Tai, Kuo-Chung. "Program Testing Complexity and
Test Criteria." IEEE Trans. Software Eng. SE-6, 6 Weyuker80
(Nov. 1980),531-538. Weyuker, Elaine J., and Thomas J. Ostrand.

"Theories of Program Testing and the Application of
Abstract: This paper explores the testing Revealing Subdomains." IEEE Trans. Software Eng.

32 SEI-CM-9-1.2

Unit Testing and Analysis

SE-6, 3 (May 1980), 236-246. Reprinted in posed for deciding when software has been
[Miller81 a]. thoroughly tested. As a basis for the development of

usable notions of test data adequacy, an abstract
Abstract: The theory of test data selection pro- definition is proposed and examined, and ap-
posed by Goodenough and Gerhart is examined. In proximations to this definition are considered.
order to extend and refine this theory, the concepts
of a revealing test criterion and a revealing sub- Weyuker84
domain are proposed. These notions are then used W
to provide a basis for constructing program tests. Weyuker, Elaine J. "The Complexity of Data Flow

Criteria for Test Data Selection." Information Proc-A subset of a program's input domain is revealing if essing Letters 19, 2 (Aug. 1984), 103-109.
the existence of one incorrectly processed input im-

plies that all of the subset's elements are processed
incorrectly. The intent of this notion is to partition Weyuker86
the program's domain in such a way that all ele- Weyuker, Elaine J. "Axiomatizing Software Test
ments of an equivalence class are either processed Data Adequacy." IEEE Trans. Software Eng. SE-12,
correctly or incorrectly. A test set is then formed by 12 (Dec. 1986), 1128-1138.
choosing one element from each class. This process
represents perfect program testing. For a practical Abstract: A test data adequacy criterion is a set of
testing strategy, the domain is partitioned into sub- rules used to determine whether or not sufficient
domains which are revealing for errors considered testing has been performed. A general axiomatic
likely to occur. theory of test data adequacy is developed, and five

previously proposed adequacy criteria are ex-
Three programs which have previously appeared in amined to see which of the axioms are satisfied. It
the literature are discussed and tested using the no- is shown that the axioms are consistent, but that
tions developed in the paper. only two of the criteria satisfy all of the axioms.

This is the foundational paper for error-based test-
ing. The criticism of [Goodenough75] is crisp, and White8O
the theoretical approach has established this as a White, Lee J., and Edward I. Cohen. "A Domain
classic paper. Strategy for Computer Program Testing." IEEE
This is essential reading for the instructor. The stu- Trans. Software Eng. SE-6, 3 (May 1980), 247-257.
dent who wishes to pursue error-based testing must Reprinted in [Miller8i a].
read it also. Abstract: This paper presents a testing strategy

designed to detect errors in the control flow of a
Weyuker82 computer program, and the conditions under which
Weyuker, Elaine J. "On Testing Non-testable this strategy is reliable are given and characterized.
Programs." Computer J. 25, 4 (Nov. 1982), 465-470. The control flow statements in a computer program

partition the input space into a set of mutually ex-
Abstract: A frequently invoked assumption in pro- clusive domains, each of which corresponds to a
gram testing is that there is an oracle (i.e., the particular program path and consists of input data
tester or an external mechanism can accurately points which cause that path to be executed. The
decide whether or not the output produced by a pro- testing strategy generates test points to examine the
gram is correct). A program is non-testable if ei- boundaries of a domain to detect whether a domain
ther an oracle does not exist or the tester must ex- error has occurred, as either one or more of these
pend some extraordinary amount of time to deter- boundaries will have shifted or else the correspond-
mine whether or not the output is correct. The ing predicate relational operator has changed. If
reasonableness of the oracle assumption is ex- test points can be chosen within E of each boundary,
amined and the conclusions is reached that in many under the appropriate assumptions, the strategy is
cases this is not a realistic assumption. The conse- shown to be reliable in detecting domain errors of
quences of assuming the availability of an oracle magnitude greater than e. Moreover, the number of
are examined and alternatives investigated, test points required to test each domain grows only

linearly with both the dimensionality of the input
Weyuker83 space and the number of predicates along the path
Weyuker, Elaine J. "Assessing Test Data Adequacy being tested.
through Program Inference." ACM Trans. Prog. This is the fundamental paper on domain testing, an
Lang. and Syst. 5,4 (Oct. 1983), 641-655. error-based testing strategy. The paper focuses on

Abstract: Despite the almost universal reliance on testing errors in the control flow of programs whose
testing as the means of locating software errors and predicates have linear interpretation in the input
its long history of use, few criteria have been pro- variables. Note that the restrictions specified in the

SEI-CM-9-1.2 33

Unit Testing and Arfalysis.

paper, especially linearity and the absence of arrays, This paper introduces the concept of LCSAJ, a
limit the applicability of this strategy mostly to data linear code sequence and jump, which has since
processing programs. The strategy is examined been used as a structural measure in several diverse
closely in [Clarke82] and complemented by the ap- experiments.
proach in [ZeiI83]. It is very well written and re- The aper should be read by the instructor inter-
quires little background, though [Howden76] should Te inpracticl me th f struct intu-
probably be read first. ested in practical methods of structural testing. Stu-

probbly e red fist.dents will find the paper difficult but rewarding.

This paper is essential reading for the instructor and

is very readable for students. WST88

Proc. 2nd Workshop on Software Testing, Analysis,
Whlte85 and Verification. Washington, D. C.: IEEE Comput-
White, Lee J. "Domain Testing and Several Out- er Society Press, July 1988.
standing Research Problems in Program Testing."
InforlCanadian J. of Operational Res. & Info. Proc- Zei183
essing 23, 1 (1985), 53-68. Zeil, Steven J. "Testing for Perturbations of Program

Abstract: In the area of program testing, there are Statements." IEEE Trans. Software Eng. SE-9, 3
several significant problems which need to be ad- (May 1983), 335-346.
dressed. It will be shown that a strategy called Abstract: Many testing methods require the selec-
Domain Testing can offer an approach when com-bined with the recent progress in software engineer- tion of a set of pathis on which tests are to be con-
ing. T he probees in the enineof- ducted. Errors in arithmetic expressions withinscientifically sound basis for the selection of test program statements can be represented as perturb-data, the development of program specifications ing functions added to the correct expression. It iswhich can be used to both generate test eata an then possible to derive the set of errors in a chosenalso ascertain the correctness of program output, functional clas: which cannot possibly be detectedand the development of relationships between pro- using a given test path. For example, test pathsndthesting andeformalt rations bwhich pass through an assignment statement "X :=gram testing andforma verification, f(Y)" are incapable of revealing if the expression
This paper is a survey of research related to domain "X - f(Y)" has been added to later statements. In
testing, with several suggestions of problems yet to general, there are an infinite number of such un-
be solved. The author attempts, with some success, detectable error perturbations for any test path.
a synthesis with related areas such as program veri- However, when the chosen functional class of error
fication, specification-based testing, and path selec- expressions is a vector space, a finite characteriza-
tion criteria. tion of all undetectable expressions can be found for

one test path, or for combined testing along severalThis well-written paper can serve as a general intro- paths. An analysis of the undeiectable pertur-
duction to domain testing. It can be understood bations for sequential programs operating on in-
without prior knowledge of the subject. It can serve tegers and real numbers is presented which permits
as a catalyst for encouraging detailed study in the the detection of mulinomial error terms. The re-
area. duction of the space of (potential) undetected errors

is proposed as a criterion for test path selection.
Woodward80Woodward M tThis paper describes a method for deducing suf-
Woodward, Martin R., David Hedley, and Michael ficient path coverage to ensure the absence ofA. Hennell. "Experience with Path Analysis and prescribed errors in a program. It models the pro-
Testing of Programs." IEEE Trans. Software Eng. gram computation and potential errors as a vector
SE-6, 3 (May 1980), 278-286. Reprinted in space. This enables the conditions for non-
[Miller81a]. detection of an error to be calculated. The strategy

Abstract: There are a number of practical d- assumes the existence of a reliable testing strategy
ficulties in performing a path testing strategy for for paths, which, of course, does not exist.
computer programs. One problem is in deciding Exposure to (White80] should provide sufficient
which paths, out of a possible infinity, to use as test background for appreciating the context in which
cases. A hierarchy of structural test metrics is sug- the techniques are to be used. The paper explores
gested to direct the choice and to monitor the an interesting area and deserves to be read by the
coverage of test paths. Another problem is that instructor. To understand the mathematics requires
many of the chosen paths may be infeasible in the some background in linear algebra, especially if
sense that no test data can ever execute them. Ex- some of the references are to be read. The paper is
perience with the use of "allegations" to circum- advanced reading for the student.
vent this problem and prevent the static generation
of many infeasible paths is reported.

34 SEI-CM-9-1.2

UNLIMITED, UINCLASSIFIED
SECURITY CLASSIFICATION OF TiIS PAGE

REPORT DOCUMENTATION PAGE

RcPo~r SECURITY CLASSIFICATION 1b, RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2. SECURIT~Y CLASSIFICATION AUTMORITY 3 DISTRIBUTIO)N/A VAIL.ABILITY OF REPORT

N/A ALPPROVED FOR PUBLIC RELEASE
7b DCASCAINONGOIGSCDUEDISTRIBUTION UNLIMITED

4 P(04fOAVJNG ORGANIZAT(nN REPCRT NUM8FRISI 5 MONITORING ORGANIZATION RCPORT NUMSERISI

SEI-CM-9-1.2

6G& NAME OF PERFORMING ORGANIZATION jBb. OFFICE SYMBOL 74L NAME OF MO4NITORING ORGANIZATION
I lit applica ble)I

SOFTWARE ENGINEERING INST. jSET SEI JOINT PROGRAM OFFICE

6L ADDRESS (City. Stae and ZIP Code) 7b. ADDRIESS (City. Slate and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

IIe. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It applicabtep

SET JOINT PROGRAM OFFICE j ESD/ AVS F1962890CO003

Be. AODRESS lCIly. Stele end ZIP Code) 10. SOURCE OF FUNDING NOS. ______________

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. No.

1t. TI TLE (include Secufsty C~ifiafjtoni 3 5 FN/ / /

nit Testing and Analysis ______ ________________

ERISONAL AUTMOR(S)

Larr J. Morell, College of WilliamadMr
13a, TYPE Of REPORT 13t. TIME COVIERED 14. OATE Of REPORT JYr. Me.. Dayj 15. PAGE COUNT

FTA.FROM TO ___ _ April 1989 34
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 1it SUBJECT TERMS (ConIMAe On PvLwIE ifnesICEM4I "a identify by block nRdm bert

FIFLO GROUP Sue Got software testing module testing
unit testing test method

I9. ABSTRACT $Continue on ,Ivqrse ifnieaEd"ly and identfy by block nunibel'I

This module examines the techniques, assessment, and management of unit testing and
analysis. Testing and analysis strategies are categorized according to whether their
coverage goal is functional, structural, error-oriented, or a combination of these.
Mastery of the material in this module allows the software engineer to define, conduct,
and evaluate unit tests and analyses and to assess new techniques proposed in the
literature.

20. OISTRIOUTION/AVAILASILITY Of ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

LINCILASSIPIOLONLIMTEO lp SAME AS R110T. 0 OTIC USERS (H UNCLASSIFIED, UNLIMITED DISTRIBUTION
22. NAME OF RESPONSIBLE INDIVIDUAL 22U TELEPHONE NUMBER 22c, OFFICE SYMBOL.

JOHN S. HERMAN, Capt, USAF (Include Ante Code) ESD/AVS
1412 268-7630 (SET JPO)

IA '1 al LfLA11TI1114 fixS I]&A. 31~ Q Of~ EY 9~ TLE! V'I,% t?1F' A - I

The Software Engineering Institute (SEI) is a federally funded research and development center. operated by Carnegie
Mellon University under contract with the United States Depatment of Defeonse.

The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
* education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be

used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in leaching a course. An eduicatio'nal materials package (EM) contains other materials not necessaily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEl educational materials are being made available to educators throughout the academic, industrial. and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Melon University. of by the United States government

Permission to make copies or derivative works of SEI curriculum modules, support materials. and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commorcia
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mal can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (I Support Materials availlable) Educational Materials

CM-i [superseded by CM-I191 EM-I Software Maintenance Exercises for a Software
CM-2 Itoduction ic Software Design Enie Protect Course
CM-3 The Software Teditnical Review Process* EM-2 APSE Interactive Monilor: An Artifact for Softwrare
CM-4 Software Coniguraton Management' Eniern Education
CM-S Infrmation Protecton EM-3 Reading Computer Prograr'..: Instrucoes Guide aid
CM sofwrSat Exercises. CM-? Assurance of Software Oualty
CM4 Formal Specifcation of Software*
CM-4 Unk Testing and Analysis
CM-l0 Models of Software Evolution: Life Cycle and Process
CM-1I Software Specifications: A Framework
CM-12 Software Metrics
CM-13 Introdion lo Softwar Verifiation anid Validation
CM-14 hItflecsd Property Protection for Software
CM-iS Software Development anid Licensing Contracts
CM-IS Software Development Using VOM
CM-17 User Interface Development'
CM-IS [superseded by CM-231
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Trie Systems'
CM-23 Technical Wniting for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Program--n
CM-26 Understanding Program Dependencies

